IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v23y1995i10p879-883.html
   My bibliography  Save this article

The relative role of trace gas emissions in greenhouse abatement policies

Author

Listed:
  • Kandlikar, Milind

Abstract

No abstract is available for this item.

Suggested Citation

  • Kandlikar, Milind, 1995. "The relative role of trace gas emissions in greenhouse abatement policies," Energy Policy, Elsevier, vol. 23(10), pages 879-883, October.
  • Handle: RePEc:eee:enepol:v:23:y:1995:i:10:p:879-883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0301-4215(95)00108-U
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    2. Kandlikar, Milind, 1996. "Indices for comparing greenhouse gas emissions: integrating science and economics," Energy Economics, Elsevier, vol. 18(4), pages 265-281, October.
    3. Dowlatabadi, Hadi & Morgan, M. Granger, 1993. "A model framework for integrated studies of the climate problem," Energy Policy, Elsevier, vol. 21(3), pages 209-221, March.
    4. Peter A. Diamond & Jerry A. Hausman, 1994. "Contingent Valuation: Is Some Number Better than No Number?," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 45-64, Fall.
    5. Richard S. Eckaus, 1992. "Comparing the Effects of Greenhouse Gas Emissions on Global Warming," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-36.
    6. Richard Schmalensee, 1993. "Comparing Greenhouse Gases for Policy Purposes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 245-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waldhoff, Stephanie & Anthoff, David & Rose, Steven K. & Tol, Richard S. J., 2014. "The marginal damage costs of different greenhouse gases: An application of FUND," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-33.
    2. Kuosmanen, Timo & Laukkanen, Marita, 2009. "(In)Efficient Management of Interacting Environmental Bads," Discussion Papers 54287, MTT Agrifood Research Finland.
    3. M. Lund & T. Berntsen & J. Fuglestvedt & M. Ponater & K. Shine, 2012. "How much information is lost by using global-mean climate metrics? an example using the transport sector," Climatic Change, Springer, vol. 113(3), pages 949-963, August.
    4. Remuzgo, Lorena & Trueba, Carmen & Sarabia, José María, 2016. "Evolution of the global inequality in greenhouse gases emissions using multidimensional generalized entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 146-157.
    5. Moslener, Ulf & Requate, Till, 2009. "The dynamics of optimal abatement strategies for multiple pollutants--An illustration in the Greenhouse," Ecological Economics, Elsevier, vol. 68(5), pages 1521-1534, March.
    6. Richard S. J. Tol & Seán Lyons, 2008. "Incorporating GHG Emission Costs in the Economic Appraisal of Projects Supported by State Development Agencies," Papers WP247, Economic and Social Research Institute (ESRI).
    7. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    8. Mathijs J. H. M. Harmsen & Maarten Berg & Volker Krey & Gunnar Luderer & Adriana Marcucci & Jessica Strefler & Detlef P. Van Vuuren, 2016. "How climate metrics affect global mitigation strategies and costs: a multi-model study," Climatic Change, Springer, vol. 136(2), pages 203-216, May.
    9. Gallo, Mariano, 2011. "A fuel surcharge policy for reducing road traffic greenhouse gas emissions," Transport Policy, Elsevier, vol. 18(2), pages 413-424, March.
    10. Stéphane De Cara & Elodie Debove & Pierre-Alain Jayet, 2006. "The Global Warming Potential Paradox: Implications for the Design of Climate Policy," Working Papers 2006/03, INRA, Economie Publique.
    11. Tol, Richard S. J. & Berntsen, Terje K. & O'Neill, Brian C. & Fuglestvedt, Jan S. & Shine, Keith P. & Balkanski, Yves & Makra, Laszlo, 2008. "Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework," Papers WP257, Economic and Social Research Institute (ESRI).
    12. Dharik S. Mallapragada & Bryan K. Mignone, 2020. "A theoretical basis for the equivalence between physical and economic climate metrics and implications for the choice of Global Warming Potential time horizon," Climatic Change, Springer, vol. 158(2), pages 107-124, January.
    13. Alex L. Marten & Elizabeth A. Kopits & Charles W. Griffiths & Stephen C. Newbold & Ann Wolverton, 2015. "Incremental CH 4 and N 2 O mitigation benefits consistent with the US Government's SC-CO 2 estimates," Climate Policy, Taylor & Francis Journals, vol. 15(2), pages 272-298, March.
    14. Heidi K. Edmonds & Julie E. Lovell & C. A. Knox Lovell, 2017. "A New Composite Index for Greenhouse Gases: Climate Science Meets Social Science," Resources, MDPI, vol. 6(4), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Sygna & Jan Fuglestvedt & H. Aaheim, 2002. "The adequacy of GWPs as indicators of damage costsincurred by global warming," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 45-62, March.
    2. Waldhoff, Stephanie & Anthoff, David & Rose, Steven K. & Tol, Richard S. J., 2014. "The marginal damage costs of different greenhouse gases: An application of FUND," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-33.
    3. Kandlikar, Milind, 1996. "Indices for comparing greenhouse gas emissions: integrating science and economics," Energy Economics, Elsevier, vol. 18(4), pages 265-281, October.
    4. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    5. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    6. Tol, Richard S. J. & Berntsen, Terje K. & O'Neill, Brian C. & Fuglestvedt, Jan S. & Shine, Keith P. & Balkanski, Yves & Makra, Laszlo, 2008. "Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework," Papers WP257, Economic and Social Research Institute (ESRI).
    7. Daniel Johansson, 2012. "Economics- and physical-based metrics for comparing greenhouse gases," Climatic Change, Springer, vol. 110(1), pages 123-141, January.
    8. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    9. Jessica Strefler & Gunnar Luderer & Tino Aboumahboub & Elmar Kriegler, 2014. "Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment," Climatic Change, Springer, vol. 125(3), pages 319-331, August.
    10. Pizer, William, 1997. "Prices vs. Quantities Revisited: The Case of Climate Change," RFF Working Paper Series dp-98-02, Resources for the Future.
    11. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    12. Paul Ekins, 1995. "Rethinking the costs related to global warming: A survey of the issues," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 231-277, October.
    13. Christian Azar & Jorge García Martín & Daniel JA. Johansson & Thomas Sterner, 2023. "The social cost of methane," Climatic Change, Springer, vol. 176(6), pages 1-22, June.
    14. Christian Azar & Daniel Johansson, 2012. "Valuing the non-CO 2 climate impacts of aviation," Climatic Change, Springer, vol. 111(3), pages 559-579, April.
    15. Olivier Godard, 1996. "Economic Expertise And Decision-Making In Controversial Universes," Post-Print halshs-00625518, HAL.
    16. Toman, Michael & Shogren, Jason, 2000. "Climate Change Policy," RFF Working Paper Series dp-00-22, Resources for the Future.
    17. Kurtze, Christiane & Springer, Katrin, 1999. "Modelling the economic impact of global warming in a general equilibrium framework," Kiel Working Papers 922, Kiel Institute for the World Economy (IfW Kiel).
    18. Lintunen, Jussi & Rautiainen, Aapo, 2021. "On physical and social-cost-based CO2 equivalents for transient albedo-induced forcing," Ecological Economics, Elsevier, vol. 190(C).
    19. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    20. Kolstad, Charles D. & Toman, Michael, 2005. "The Economics of Climate Policy," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 30, pages 1561-1618, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:23:y:1995:i:10:p:879-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.