IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v69y2018icp196-203.html
   My bibliography  Save this article

The costs of charging Plug-in Electric Vehicles (PEVs): Within day variation in emissions and electricity prices

Author

Listed:
  • Fang, Yingkai
  • Asche, Frank
  • Novan, Kevin

Abstract

The social costs of charging plug-in electrical vehicles (PEVs) that vary by times of day and by levels of emissions in electricity production are investigated. Using data available for the Sacramento area in the United States for 2013, we estimate marginal emission rates of electricity and marginal price of electricity provided for charging PEVs at different times of the day. As the marginal emission rates and wholesale electricity price have different daily patterns, there is a trade-off between emission and charging cost. Moreover, the estimates in the literature of the social costs for the most important emission, CO2, vary substantially, implying that the social cost of charging PEVs vary with the assumed cost. Simulations show that the charging time of lowest social costs for PEVs is found to be at midnight if the social cost of CO2 is not very high (<$90/ton), however, we find this pattern changes with an increase in the social cost of CO2. A high price of CO2 tends to shift the time of lowest social costs of charging to other times of day, thus, charging at workplaces during the daytime rather than at home overnight can reduce the social cost of charging PEVs.

Suggested Citation

  • Fang, Yingkai & Asche, Frank & Novan, Kevin, 2018. "The costs of charging Plug-in Electric Vehicles (PEVs): Within day variation in emissions and electricity prices," Energy Economics, Elsevier, vol. 69(C), pages 196-203.
  • Handle: RePEc:eee:eneeco:v:69:y:2018:i:c:p:196-203
    DOI: 10.1016/j.eneco.2017.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317304036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. Delmas, Magali A. & Kahn, Matthew E. & Locke, Stephen L., 2017. "The private and social consequences of purchasing an electric vehicle and solar panels: Evidence from California," Research in Economics, Elsevier, vol. 71(2), pages 225-235.
    3. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    4. Johnson, Erik Paul, 2014. "The cost of carbon dioxide abatement from state renewable portfolio standards," Resource and Energy Economics, Elsevier, vol. 36(2), pages 332-350.
    5. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    6. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    7. Bettle, R. & Pout, C.H. & Hitchin, E.R., 2006. "Interactions between electricity-saving measures and carbon emissions from power generation in England and Wales," Energy Policy, Elsevier, vol. 34(18), pages 3434-3446, December.
    8. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    9. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2016. "Electricity costs for an electric vehicle fueling station with Level 3 charging," Applied Energy, Elsevier, vol. 169(C), pages 813-830.
    10. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    11. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    12. Jarke, Johannes & Perino, Grischa, 2017. "Do renewable energy policies reduce carbon emissions? On caps and inter-industry leakage," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 102-124.
    13. Banzhaf, H. Spencer & Chupp, B. Andrew, 2012. "Fiscal federalism and interjurisdictional externalities: New results and an application to US Air pollution," Journal of Public Economics, Elsevier, vol. 96(5), pages 449-464.
    14. Ke, Bwo-Ren & Chung, Chen-Yuan & Chen, Yen-Chang, 2016. "Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu," Applied Energy, Elsevier, vol. 177(C), pages 649-660.
    15. Sexton, Steven E. & Sexton, Alison L., 2014. "Conspicuous conservation: The Prius halo and willingness to pay for environmental bona fides," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 303-317.
    16. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    17. Kevin Novan & Aaron Smith, 2018. "The Incentive to Overinvest in Energy Efficiency: Evidence from Hourly Smart-Meter Data," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(3), pages 577-605.
    18. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    19. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    20. Bubeck, Steffen & Tomaschek, Jan & Fahl, Ulrich, 2016. "Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany," Transport Policy, Elsevier, vol. 50(C), pages 63-77.
    21. Spiller, Elisheba & Sopher, Peter & Martin, Nicholas & Mirzatuny, Marita & Zhang, Xinxing, 2017. "The environmental impacts of green technologies in TX," Energy Economics, Elsevier, vol. 68(C), pages 199-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    3. Li, Yanning & Li, Xinwei & Jenn, Alan, 2022. "Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California," Applied Energy, Elsevier, vol. 323(C).
    4. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Li, Shaojie & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2023. "Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design," Energy, Elsevier, vol. 271(C).
    5. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    6. Wangsness, Paal Brevik & Proost, Stef & Rødseth, Kenneth Løvold, 2021. "Optimal policies for electromobility: Joint assessment of transport and electricity distribution costs in Norway," Utilities Policy, Elsevier, vol. 72(C).
    7. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    8. Kabir A. Mamun & F. R. Islam & R. Haque & Aneesh A. Chand & Kushal A. Prasad & Krishneel K. Goundar & Krishneel Prakash & Sidharth Maharaj, 2022. "Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    9. Oliveira, Tiago & Varum, Celeste & Botelho, Anabela, 2019. "Econometric modeling of CO2 emissions abatement: Comparing alternative approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 310-322.
    10. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    12. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Zihan Zhang & Enping Li & Guowei Zhang, 2023. "How Efficient China’s Tiered Pricing Is for Household Electricity: Evidence from Survey Data," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    14. L. (Lisa B.) Ryan & Sarah La Monaca, 2018. "The State of Play in Electric Vehicle Charging Services: Global Trends with Insight for Ireland," Open Access publications 10197/9912, School of Economics, University College Dublin.
    15. Brown, Austin PhD & Fuller, Sam & Gregory, Jack, 2019. "State-of-the-Knowledge White Paper Series: How Zero-Emission Vehicle Incentives and Related Policies Affect the Market," Institute of Transportation Studies, Working Paper Series qt28x636nr, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    2. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    3. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.
    4. Jing Liang & Yueming Qiu & Bo Xing, 2021. "Social Versus Private Benefits of Energy Efficiency Under Time-of-Use and Increasing Block Pricing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 43-75, January.
    5. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    6. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    7. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    8. John A. List & Robert D. Metcalfe & Michael K. Price & Florian Rundhammer, 2017. "Harnessing Policy Complementarities to Conserve Energy: Evidence from a Natural Field Experiment," NBER Working Papers 23355, National Bureau of Economic Research, Inc.
    9. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2015. "Environmental Benefits from Driving Electric Vehicles?," NBER Working Papers 21291, National Bureau of Economic Research, Inc.
    10. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    11. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
    12. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    13. Li, Ping & Zhang, ZhongXiang, 2023. "The effects of new energy vehicle subsidies on air quality: Evidence from China," Energy Economics, Elsevier, vol. 120(C).
    14. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    15. Stephen P. Holland & Erin T. Mansur & Andrew J. Yates, 2021. "The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 316-344, August.
    16. Fox, Mairi-Jane V. & Erickson, Jon D., 2020. "Design and meaning of the genuine progress indicator: A statistical analysis of the U.S. fifty-state model," Ecological Economics, Elsevier, vol. 167(C).
    17. Mark Colas & John M. Morehouse, 2022. "The environmental cost of land‐use restrictions," Quantitative Economics, Econometric Society, vol. 13(1), pages 179-223, January.
    18. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.
    19. Kollenbach, Gilbert, 2017. "On the optimal accumulation of renewable energy generation capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 157-179.
    20. Spiller, Elisheba & Sopher, Peter & Martin, Nicholas & Mirzatuny, Marita & Zhang, Xinxing, 2017. "The environmental impacts of green technologies in TX," Energy Economics, Elsevier, vol. 68(C), pages 199-214.

    More about this item

    Keywords

    Plug-in electric vehicles; Social costs; Marginal emission rates;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:69:y:2018:i:c:p:196-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.