IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v59y2016icp45-57.html
   My bibliography  Save this article

Heterogeneity in the adoption of photovoltaic systems in Flanders

Author

Listed:
  • De Groote, Olivier
  • Pepermans, Guido
  • Verboven, Frank

Abstract

We study the determinants of PV adoption in the region of Flanders (Belgium), where PV adoption reached high levels during 2006–2012, because of active government intervention. Based on a unique dataset at a very detailed spatial level, we estimate a Poisson model to explain the heterogeneity in adoption rates. We obtain the following findings. First, local policies have a robust and significant impact on PV adoption. Second, there is a strong unconditional income effect, implying a Matthew effect in the subsidization of PVs. Our third finding is however that this income effect is largely driven by the fact that wealthier households are more likely to adopt because they tend to be higher users, are more frequent house owners, or own houses that are better suited for PV. In several extensions, we consider the determinants of the average size of installed PVs, and the differential impact of certain variables over time.

Suggested Citation

  • De Groote, Olivier & Pepermans, Guido & Verboven, Frank, 2016. "Heterogeneity in the adoption of photovoltaic systems in Flanders," Energy Economics, Elsevier, vol. 59(C), pages 45-57.
  • Handle: RePEc:eee:eneeco:v:59:y:2016:i:c:p:45-57
    DOI: 10.1016/j.eneco.2016.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316301803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2016.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, January.
    2. Kontogianni, Areti & Tourkolias, Christos & Skourtos, Michalis, 2013. "Renewables portfolio, individual preferences and social values towards RES technologies," Energy Policy, Elsevier, vol. 55(C), pages 467-476.
    3. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of Solar Photovoltaic Technology in the UK," Working Papers EPRG 1332, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Sutherland, Ronald J, 1996. "The economics of energy conservation policy," Energy Policy, Elsevier, vol. 24(4), pages 361-370, April.
    5. Mills, Bradford F. & Schleich, Joachim, 2010. "Why don't households see the light?: Explaining the diffusion of compact fluorescent lamps," Resource and Energy Economics, Elsevier, vol. 32(3), pages 363-378, August.
    6. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    7. Drury, Easan & Miller, Mackay & Macal, Charles M. & Graziano, Diane J. & Heimiller, Donna & Ozik, Jonathan & Perry IV, Thomas D., 2012. "The transformation of southern California's residential photovoltaics market through third-party ownership," Energy Policy, Elsevier, vol. 42(C), pages 681-690.
    8. Benno Torgler & María A.García-Valiñas & Alison Macintyre, 2007. "Differences in Preferences Towards the Environment: The Impact of a Gender, Age and Parental Effect," CREMA Working Paper Series 2008-01, Center for Research in Economics, Management and the Arts (CREMA).
    9. Glenn W. Harrison & Morten I. Lau & Melonie B. Williams, 2002. "Estimating Individual Discount Rates in Denmark: A Field Experiment," American Economic Review, American Economic Association, vol. 92(5), pages 1606-1617, December.
    10. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of solar Photovoltaic Technology in the UK," Cambridge Working Papers in Economics 1357, Faculty of Economics, University of Cambridge.
    11. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    12. Santos Silva, J.M.C. & Tenreyro, Silvana, 2011. "Further simulation evidence on the performance of the Poisson pseudo-maximum likelihood estimator," Economics Letters, Elsevier, vol. 112(2), pages 220-222, August.
    13. Adam B. Jaffe & Robert N. Stavins, 1994. "Energy-Efficiency Investments and Public Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 43-66.
    14. Willis, Ken & Scarpa, Riccardo & Gilroy, Rose & Hamza, Neveen, 2011. "Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption," Energy Policy, Elsevier, vol. 39(10), pages 6021-6029, October.
    15. Kahn Matthew E & Vaughn Ryan K., 2009. "Green Market Geography: The Spatial Clustering of Hybrid Vehicles and LEED Registered Buildings," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(2), pages 1-24, March.
    16. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    17. Crago, Christine & Chernyakhovskiy, Ilya, 2014. "Solar PV Technology Adoption in the United States: An Empirical Investigation of State Policy Effectiveness," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169939, Agricultural and Applied Economics Association.
    18. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
    19. Johannes Rode & Alexander Weber, 2011. "Knowledge Does Not Fall Far from the Tree - A Case Study on the Diffusion of Solar Cells in Germany," ERSA conference papers ersa11p497, European Regional Science Association.
    20. Venkatesh, Viswanath & Morris, Michael G. & Ackerman, Phillip L., 2000. "A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision-Making Processes," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(1), pages 33-60, September.
    21. Walsh, Michael J., 1989. "Energy tax credits and housing improvement," Energy Economics, Elsevier, vol. 11(4), pages 275-284, October.
    22. J. M. C. Santos Silva & Silvana Tenreyro, 2006. "The Log of Gravity," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 641-658, November.
    23. Vasseur, Véronique & Kemp, René, 2015. "The adoption of PV in the Netherlands: A statistical analysis of adoption factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 483-494.
    24. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    25. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan, 2011. "The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California," Energy Policy, Elsevier, vol. 39(9), pages 5243-5253, September.
    26. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    27. Kevin E. Staub & Rainer Winkelmann, 2013. "Consistent Estimation Of Zero‐Inflated Count Models," Health Economics, John Wiley & Sons, Ltd., vol. 22(6), pages 673-686, June.
    28. Read, Daniel & Read, N. L., 2004. "Time discounting over the lifespan," Organizational Behavior and Human Decision Processes, Elsevier, vol. 94(1), pages 22-32, May.
    29. Mills, Bradford F. & Schleich, Joachim, 2009. "Profits or preferences? Assessing the adoption of residential solar thermal technologies," Energy Policy, Elsevier, vol. 37(10), pages 4145-4154, October.
    30. Cai, Desmond W.H. & Adlakha, Sachin & Low, Steven H. & De Martini, Paul & Mani Chandy, K., 2013. "Impact of residential PV adoption on Retail Electricity Rates," Energy Policy, Elsevier, vol. 62(C), pages 830-843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    3. Wiggins, Seth, 2016. "It’s All Local? How Sub-State Policies Affect Western US Residential Solar Adoption," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235667, Agricultural and Applied Economics Association.
    4. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    5. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Mills, Bradford F. & Schleich, Joachim, 2009. "Profits or preferences? Assessing the adoption of residential solar thermal technologies," Energy Policy, Elsevier, vol. 37(10), pages 4145-4154, October.
    7. Rai, Varun & Reeves, D. Cale & Margolis, Robert, 2016. "Overcoming barriers and uncertainties in the adoption of residential solar PV," Renewable Energy, Elsevier, vol. 89(C), pages 498-505.
    8. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    9. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    11. Takanobu Kosugi & Yoshiyuki Shimoda & Takayuki Tashiro, 2019. "Neighborhood influences on the diffusion of residential photovoltaic systems in Kyoto City, Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 477-505, October.
    12. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    13. Ryszard Kata & Kazimierz Cyran & Sławomir Dybka & Małgorzata Lechwar & Rafał Pitera, 2021. "Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region," Energies, MDPI, vol. 14(11), pages 1-21, May.
    14. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    15. Mills, Bradford & Schleich, Joachim, 2010. "What's driving energy efficient appliance label awareness and purchase propensity?," Energy Policy, Elsevier, vol. 38(2), pages 814-825, February.
    16. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    17. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    18. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    19. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    20. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.

    More about this item

    Keywords

    Adoption of photovoltaic systems; Renewable energy sources; Poisson regression;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:59:y:2016:i:c:p:45-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.