IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v31y2009isupplement1ps50-s61.html
   My bibliography  Save this article

Efficient climate policies under technology and climate uncertainty

Author

Listed:
  • Held, Hermann
  • Kriegler, Elmar
  • Lessmann, Kai
  • Edenhofer, Ottmar

Abstract

This article explores efficient climate policies in terms of investment streams into fossil and renewable energy technologies. The investment decisions maximise social welfare while observing a probabilistic guardrail for global mean temperature rise under uncertain technology and climate parameters. Such a guardrail constitutes a chance constraint, and the resulting optimisation problem is an instance of chance constrained programming, not stochastic programming as often employed. Our analysis of a model of economic growth and endogenous technological change, MIND, suggests that stringent mitigation strategies cannot guarantee a very high probability of limiting warming to 2 °C since preindustrial time under current uncertainty about climate sensitivity and climate response time scale. Achieving the 2 °C temperature target with a probability P* of 75% requires drastic carbon dioxide emission cuts. This holds true even though we have assumed an aggressive mitigation policy on other greenhouse gases from, e.g., the agricultural sector. The emission cuts are deeper than estimated from a deterministic calculation with climate sensitivity fixed at the P* quantile of its marginal probability distribution (3.6 °C). We show that earlier and cumulatively larger investments into the renewable sector are triggered by including uncertainty in the technology and climate response time scale parameters. This comes at an additional GWP loss of 0.3%, resulting in a total loss of 0.8% GWP for observing the chance constraint. We obtained those results with a new numerical scheme to implement constrained welfare optimisation under uncertainty as a chance constrained programming problem in standard optimisation software such as GAMS. The scheme is able to incorporate multivariate non-factorial probability measures such as given by the joint distribution of climate sensitivity and response time. We demonstrate the scheme for the case of a four-dimensional parameter space capturing uncertainty about climate and technology.

Suggested Citation

  • Held, Hermann & Kriegler, Elmar & Lessmann, Kai & Edenhofer, Ottmar, 2009. "Efficient climate policies under technology and climate uncertainty," Energy Economics, Elsevier, vol. 31(Supplemen), pages 50-61.
  • Handle: RePEc:eee:eneeco:v:31:y:2009:i:supplement1:p:s50-s61
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(08)00192-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    2. Ottmar Edenhofer, Kai Lessmann, Nico Bauer, 2006. "Mitigation Strategies and Costs of Climate Protection: The Effects of ETC in the Hybrid Model MIND," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 207-222.
    3. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    4. Mirrlees, J. A. & Stern, N. H., 1972. "Fairly good plans," Journal of Economic Theory, Elsevier, vol. 4(2), pages 268-288, April.
    5. van der Zwaan, Bob & Gerlagh, Reyer, 2006. "Climate sensitivity uncertainty and the necessity to transform global energy supply," Energy, Elsevier, vol. 31(14), pages 2571-2587.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    7. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    8. Peterson, Sonja, 2006. "Uncertainty and economic analysis of climate change: a survey of approaches and findings," Open Access Publications from Kiel Institute for the World Economy 3778, Kiel Institute for the World Economy (IfW Kiel).
    9. Philippe Ambrosi & Jean-Charles Hourcade & Stéphane Hallegatte & Franck Lecocq & Patrice Dumas & Minh Ha Duong, 2009. "Optimal Control Models and Elicitation of Attitudes towards Climate Damages," International Series in Operations Research & Management Science, in: Jerzy A. Filar & Alain Haurie (ed.), Uncertainty and Environmental Decision Making, chapter 0, pages 177-209, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2007. "Innovation Markets in the Policy Appraisal of Climate Change Mitigation," IDEI Working Papers 481, Institut d'Économie Industrielle (IDEI), Toulouse.
    2. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    3. Baptiste Perrissin Fabert & Antonin Pottier & Etienne Espagne & Patrice Dumas & Franck Nadaud, 2014. "Why are climate policies of the present decade so crucial for keeping the 2 °C target credible?," Climatic Change, Springer, vol. 126(3), pages 337-349, October.
    4. Baptiste Perrissin Fabert & Etienne Espagne & Antonin Pottier & Patrice Dumas, 2012. "The “Doomsday” Effect in Climate Policies. Why is the Present Decade so Crucial to Tackling the Climate Challenge?," Working Papers 2012.62, Fondazione Eni Enrico Mattei.
    5. Nir Y. Krakauer, 2014. "Economic Growth Assumptions in Climate and Energy Policy," Sustainability, MDPI, vol. 6(3), pages 1-14, March.
    6. GRIMAUD André & LAFFORGUE Gilles & MAGNE Bertrand, 2007. "Economic growth and Climate change in a decentralized Economy: A Theoretical and Empirical Approach," LERNA Working Papers 07.04.225, LERNA, University of Toulouse.
    7. Ralph Hippe, 2015. "Why did the knowledge transition occur in the West and not in the East? ICT and the role of governments in Europe, East Asia and the Muslim world," GRI Working Papers 180, Grantham Research Institute on Climate Change and the Environment.
    8. Perrissin Fabert, Baptiste & Espagne, Etienne & Antonin, Pottier & Patrice, Dumas, 2014. "The Comparative Impact of Integrated Assessment Models' Structures on Optimal Mitigation Policies," Climate Change and Sustainable Development 177304, Fondazione Eni Enrico Mattei (FEEM).
    9. Miftakhova, Alena, 2021. "Global sensitivity analysis for optimal climate policies: Finding what truly matters," Economic Modelling, Elsevier, vol. 105(C).
    10. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    11. Tol, Richard S.J. & Yohe, Gary W., 2009. "The Stern Review: A deconstruction," Energy Policy, Elsevier, vol. 37(3), pages 1032-1040, March.
    12. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    13. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    14. André Grimaud & Gilles Lafforgue, 2008. "Climate change mitigation policies : Are R&D subsidies preferable to a carbon tax ?," Revue d'économie politique, Dalloz, vol. 118(6), pages 915-940.
    15. Mark Kagan, 2012. "Climate Change Skepticism in the Face of Catastrophe," Tinbergen Institute Discussion Papers 12-112/VIII, Tinbergen Institute, revised 29 Sep 2014.
    16. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    17. Stern, Nicholas, 2014. "Ethics, equity and the economics of climate change paper 2: economics and politics," LSE Research Online Documents on Economics 62704, London School of Economics and Political Science, LSE Library.
    18. Franck Lecocq & Jean-Charles Hourcade, 2016. "Unspoken Ethical Issues in the Climate Affair: Insights from a Theoretical Analysis of Negotiation Mandates," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 311-340, Springer.
    19. Stein, Lukas & Khabbazan, Mohammad Mohammadi & Held, Hermann, 2020. "Replacing temperature targets by subsidiary targetsː How accurate are they? – Overshooting vs. economic losses," WiSo-HH Working Paper Series 57, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    20. Christian Traeger, 2014. "Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 627-664, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:supplement1:p:s50-s61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.