Advanced Search
MyIDEAS: Login to save this article or follow this journal

A generalized pattern matching approach for multi-step prediction of crude oil price

Contents:

Author Info

  • Fan, Ying
  • Liang, Qiang
  • Wei, Yi-Ming

Abstract

This paper applies pattern matching technique to multi-step prediction of crude oil prices and proposes a new approach: generalized pattern matching based on genetic algorithm (GPMGA), which can be used to forecast future crude oil price based on historical observations. This approach can detect the most similar pattern in contemporary crude oil prices from the historical data. Based on the similar historical pattern, a multi-step prediction of future crude oil prices can be figured out. In GPMGA modeling process, the traditional pattern matching is not directly employed. Historical data is transformed to larger or smaller scales in the x-axis and the y-axis directions, so that a generalized price pattern reflecting current price movement can be obtained. This treatment overcomes the local deficiency of the traditional pattern modeling in recognition system approach (PMRS), and in addition to this, a matched historical pattern in a larger pattern size can be found. Since the approach takes not only historical similarities but also differences into account, the concept of "generalized pattern matching" is proposed here. It proves a new basis for multi-step prediction by finding out more essential similarities through various transformations. The related empirical study is constructed for a one-month forecasting of the Brent and WTI crude oil prices, and satisfying forecasting results are attained. At the end, comparisons with some other time series prediction approaches, such as PMRS and Elman network, demonstrate the effectiveness and superiority of GPMGA over others.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V7G-4MH2BYY-1/1/e3d77b08431618aff41c9398c03da4b9
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 30 (2008)
Issue (Month): 3 (May)
Pages: 889-904

as in new window
Handle: RePEc:eee:eneeco:v:30:y:2008:i:3:p:889-904

Contact details of provider:
Web page: http://www.elsevier.com/locate/eneco

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
  2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
  3. Abramson, Bruce & Finizza, Anthony, 1995. "Probabilistic forecasts from probabilistic models: A case study in the oil market," International Journal of Forecasting, Elsevier, vol. 11(1), pages 63-72, March.
  4. Ye, Michael & Zyren, John & Shore, Joanne, 2006. "Forecasting short-run crude oil price using high- and low-inventory variables," Energy Policy, Elsevier, vol. 34(17), pages 2736-2743, November.
  5. Tang, Linghui & Hammoudeh, Shawkat, 2002. "An empirical exploration of the world oil price under the target zone model," Energy Economics, Elsevier, vol. 24(6), pages 577-596, November.
  6. Gil-Alana, Luis A., 2001. "A fractionally integrated model with a mean shift for the US and the UK real oil prices," Economic Modelling, Elsevier, vol. 18(4), pages 643-658, December.
  7. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
  8. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
  9. Bernabe, Araceli & Martina, Esteban & Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos, 2004. "A multi-model approach for describing crude oil price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 567-584.
  10. Abramson, Bruce & Finizza, Anthony, 1991. "Using belief networks to forecast oil prices," International Journal of Forecasting, Elsevier, vol. 7(3), pages 299-315, November.
  11. Moosa, Imad A. & Al-Loughani, Nabeel E., 1994. "Unbiasedness and time varying risk premia in the crude oil futures market," Energy Economics, Elsevier, vol. 16(2), pages 99-105, April.
  12. Alvarez-Ramirez, Jose & Soriano, Angel & Cisneros, Myriam & Suarez, Rodolfo, 2003. "Symmetry/anti-symmetry phase transitions in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 583-596.
  13. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
  14. Panas, Epaminondas & Ninni, Vassilia, 2000. "Are oil markets chaotic? A non-linear dynamic analysis," Energy Economics, Elsevier, vol. 22(5), pages 549-568, October.
  15. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
  16. Michael Ye & John Zyren & Joanne Shore, 2006. "Short-Run Crude Oil Price and Surplus Production Capacity," International Advances in Economic Research, Springer, vol. 12(3), pages 390-394, August.
  17. Ye, Michael & Zyren, John & Shore, Joanne, 2005. "A monthly crude oil spot price forecasting model using relative inventories," International Journal of Forecasting, Elsevier, vol. 21(3), pages 491-501.
  18. Gulen, S. Gurcan, 1998. "Efficiency in the crude oil futures market," Journal of Energy Finance & Development, Elsevier, vol. 3(1), pages 13-21.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
  2. Sylvie Geisendorf, 2011. "Internal selection and market selection in economic Genetic Algorithms," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 817-841, December.
  3. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying & Huang, Wei-qiang, 2014. "Analysis of the temporal properties of price shock sequences in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 235-246.
  4. Trapero, Juan R. & Pedregal, Diego J., 2009. "Frequency domain methods applied to forecasting electricity markets," Energy Economics, Elsevier, vol. 31(5), pages 727-735, September.
  5. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
  6. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
  7. Ghaffari, Ali & Zare, Samaneh, 2009. "A novel algorithm for prediction of crude oil price variation based on soft computing," Energy Economics, Elsevier, vol. 31(4), pages 531-536, July.
  8. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:30:y:2008:i:3:p:889-904. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.