IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v84y1995i3p539-561.html
   My bibliography  Save this article

Compaction and separation algorithms for non-convex polygons and their applications

Author

Listed:
  • Li, Zhenyu
  • Milenkovic, Victor

Abstract

No abstract is available for this item.

Suggested Citation

  • Li, Zhenyu & Milenkovic, Victor, 1995. "Compaction and separation algorithms for non-convex polygons and their applications," European Journal of Operational Research, Elsevier, vol. 84(3), pages 539-561, August.
  • Handle: RePEc:eee:ejores:v:84:y:1995:i:3:p:539-561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(95)00021-H
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erjavec, J. & Gradisar, M. & Trkman, P., 2012. "Assessment of stock size to minimize cutting stock production costs," International Journal of Production Economics, Elsevier, vol. 135(1), pages 170-176.
    2. Stoyan, Yu. G. & Pankratov, A. V., 1999. "Regular packing of congruent polygons on the rectangular sheet," European Journal of Operational Research, Elsevier, vol. 113(3), pages 653-675, March.
    3. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    4. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.
    5. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    6. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    7. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    8. Riehme, Jan & Scheithauer, Guntram & Terno, Johannes, 1996. "The solution of two-stage guillotine cutting stock problems having extremely varying order demands," European Journal of Operational Research, Elsevier, vol. 91(3), pages 543-552, June.
    9. Ramón Alvarez-Valdes & Rafael Martí & Jose M. Tamarit & Antonio Parajón, 2007. "GRASP and Path Relinking for the Two-Dimensional Two-Stage Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 261-272, May.
    10. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    11. Neli[beta]en, Josef, 1995. "How to use structural constraints to compute an upper bound for the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 84(3), pages 662-680, August.
    12. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    13. Cizman, Anton & Cernetic, Janko, 2004. "Improving competitiveness in veneers production by a simple-to-use DSS," European Journal of Operational Research, Elsevier, vol. 156(1), pages 241-260, July.
    14. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    15. Bischoff, E. E. & Wascher, G., 1995. "Cutting and packing," European Journal of Operational Research, Elsevier, vol. 84(3), pages 503-505, August.
    16. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    17. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    18. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    19. Anselmo Ramalho Pitombeira-Neto & Bruno de Athayde Prata, 2020. "A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 178-192, April.
    20. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:84:y:1995:i:3:p:539-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.