IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i1p180-186.html
   My bibliography  Save this article

Reliability analysis of a single warm-standby system subject to repairable and nonrepairable failures

Author

Listed:
  • Wells, Charles E.

Abstract

An n-unit system provisioned with a single warm standby is investigated. The individual units are subject to repairable failures, while the entire system is subject to a nonrepairable failure at some finite but random time in the future. System performance measures for systems observed over a time interval of random duration are introduced. Two models to compute these system performance measures, one employing a policy of block replacement, and the other without a block replacement policy, are developed. Distributional assumptions involving distributions of phase type introduce matrix Laplace transformations into the calculations of the performance measures. It is shown that these measures are easily carried out on a laptop computer using Microsoft Excel. A simple economic model is used to illustrate how the performance measures may be used to determine optimal economic design specifications for the warm standby.

Suggested Citation

  • Wells, Charles E., 2014. "Reliability analysis of a single warm-standby system subject to repairable and nonrepairable failures," European Journal of Operational Research, Elsevier, vol. 235(1), pages 180-186.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:1:p:180-186
    DOI: 10.1016/j.ejor.2013.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713010114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Subramanian & K. S. Venkatakrishnan & K. P. Kistner, 1976. "Reliability of a Repairable System with Standby Failure," Operations Research, INFORMS, vol. 24(1), pages 169-176, February.
    2. Perez-Ocon, Rafael & Montoro-Cazorla, Delia, 2006. "A multiple warm standby system with operational and repair times following phase-type distributions," European Journal of Operational Research, Elsevier, vol. 169(1), pages 178-188, February.
    3. Yun, Won Young & Cha, Ji Hwan, 2010. "Optimal design of a general warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 880-886.
    4. Ruiz-Castro, Juan Eloy & Fernández-Villodre, Gemma, 2012. "A complex discrete warm standby system with loss of units," European Journal of Operational Research, Elsevier, vol. 218(2), pages 456-469.
    5. Eryilmaz, Serkan, 2011. "The behavior of warm standby components with respect to a coherent system," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1319-1325, August.
    6. John L. Bryant & Richard A. Murphy, 1983. "Stocking Repair Kits for Systems with Limited Life," Management Science, INFORMS, vol. 29(5), pages 546-558, May.
    7. Papageorgiou, Effie & Kokolakis, George, 2010. "Reliability analysis of a two-unit general parallel system with (n-2) warm standbys," European Journal of Operational Research, Elsevier, vol. 201(3), pages 821-827, March.
    8. S. Srinivasan & R. Subramanian, 2006. "Reliability analysis of a three unit warm standby redundant system with repair," Annals of Operations Research, Springer, vol. 143(1), pages 227-235, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. K. Bhardwaj & Komaldeep Kaur & S. C. Malik, 2017. "Reliability indices of a redundant system with standby failure and arbitrary distribution for repair and replacement times," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 423-431, June.
    2. Jia, Heping & Liu, Dunnan & Li, Yanbin & Ding, Yi & Liu, Mingguang & Peng, Rui, 2020. "Reliability evaluation of power systems with multi-state warm standby and multi-state performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
    4. Xiaojun Liang & Yinghui Tang, 2019. "The improvement upon the reliability of the k-out-of-n:F system with the repair rates differentiation policy," Operational Research, Springer, vol. 19(2), pages 479-500, June.
    5. Charles Wells, 2015. "Bounds on uptime distribution based on aging for systems with finite lifetimes," Annals of Operations Research, Springer, vol. 235(1), pages 757-769, December.
    6. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    7. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    8. Ruiz-Castro, Juan Eloy, 2016. "Complex multi-state systems modelled through marked Markovian arrival processes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 852-865.
    9. Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
    10. Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
    11. Chen, Wu-Lin & Wang, Kuo-Hsiung, 2018. "Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 476-486.
    12. Anushri Maji & Asoke Kumar Bhunia & Shyamal Kumar Mondal, 2022. "A production-reliability-inventory model for a series-parallel system with mixed strategy considering shortage, warranty period, credit period in crisp and stochastic sense," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 862-907, September.
    13. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    14. Kiril Tenekedjiev & Simon Cooley & Boyan Mednikarov & Guixin Fan & Natalia Nikolova, 2021. "Reliability Simulation of Two Component Warm-Standby System with Repair, Switching, and Back-Switching Failures under Three Aging Assumptions," Mathematics, MDPI, vol. 9(20), pages 1-40, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Castro, Juan Eloy & Fernández-Villodre, Gemma, 2012. "A complex discrete warm standby system with loss of units," European Journal of Operational Research, Elsevier, vol. 218(2), pages 456-469.
    2. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 155-162.
    4. Edmond Vanderperre & Stanislav Makhanov, 2014. "On the availability of a warm standby system: a numerical approach," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 644-657, July.
    5. Levitin, Gregory & Xing, Liudong & Peng, Sun & Dai, Yuanshun, 2015. "Optimal choice of standby modes in 1-out-of-N system with respect to mission reliability and cost," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 587-596.
    6. E.J. Vanderperre & S.S. Makhanov, 2014. "Reliability analysis of a repairable duplex system," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(9), pages 1970-1977, September.
    7. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Heterogeneous standby systems with shocks-driven preventive replacements," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1189-1197.
    8. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    9. Kundu, Pradip & Hazra, Nil Kamal & Nanda, Asok K., 2016. "Reliability study of a coherent system with single general standby component," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 25-33.
    10. E. Vanderperre & S. Makhanov, 2015. "Reliability of Birolini’s duplex system sustained by a cold standby unit and subjected to a priority rule," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 441-465, July.
    11. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    12. R. K. Bhardwaj & Komaldeep Kaur & S. C. Malik, 2017. "Reliability indices of a redundant system with standby failure and arbitrary distribution for repair and replacement times," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 423-431, June.
    13. Levitin, Gregory & Jia, Heping & Ding, Yi & Song, Yonghua & Dai, Yuanshun, 2017. "Reliability of multi-state systems with free access to repairable standby elements," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 192-197.
    14. Navarro, Jorge & Rychlik, Tomasz, 2010. "Comparisons and bounds for expected lifetimes of reliability systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 309-317, November.
    15. Gregory Levitin & Liudong Xing & Yuanshun Dai, 2020. "Mission Abort Policy for Systems with Observable States of Standby Components," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1900-1912, October.
    16. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    17. S. Srinivasan & R. Subramanian, 2006. "Reliability analysis of a three unit warm standby redundant system with repair," Annals of Operations Research, Springer, vol. 143(1), pages 227-235, March.
    18. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V., 2012. "A fast approximation method for reliability analysis of cold-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 119-126.
    19. Montoro Cazorla, Delia & Pérez-Ocón, Rafael, 2008. "An LDQBD process under degradation, inspection, and two types of repair," European Journal of Operational Research, Elsevier, vol. 190(2), pages 494-508, October.
    20. Charles Wells, 2015. "Bounds on uptime distribution based on aging for systems with finite lifetimes," Annals of Operations Research, Springer, vol. 235(1), pages 757-769, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:1:p:180-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.