IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v233y2014i1p234-245.html
   My bibliography  Save this article

Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem

Author

Listed:
  • Sinclair, Karine
  • Cordeau, Jean-François
  • Laporte, Gilbert

Abstract

Because most commercial passenger airlines operate on a hub-and-spoke network, small disturbances can cause major disruptions in their planned schedules and have a significant impact on their operational costs and performance. When a disturbance occurs, the airline often applies a recovery policy in order to quickly resume normal operations. We present in this paper a large neighborhood search heuristic to solve an integrated aircraft and passenger recovery problem. The problem consists of creating new aircraft routes and passenger itineraries to produce a feasible schedule during the recovery period. The method is based on an existing heuristic, developed in the context of the 2009 ROADEF Challenge, which alternates between three phases: construction, repair and improvement. We introduce a number of refinements in each phase so as to perform a more thorough search of the solution space. The resulting heuristic performs very well on the instances introduced for the challenge, obtaining the best known solution for 17 out of 22 instances within five minutes of computing time and 21 out of 22 instances within 10minutes of computing time.

Suggested Citation

  • Sinclair, Karine & Cordeau, Jean-François & Laporte, Gilbert, 2014. "Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 234-245.
  • Handle: RePEc:eee:ejores:v:233:y:2014:i:1:p:234-245
    DOI: 10.1016/j.ejor.2013.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ladislav Lettovský & Ellis L. Johnson & George L. Nemhauser, 2000. "Airline Crew Recovery," Transportation Science, INFORMS, vol. 34(4), pages 337-348, November.
    2. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    3. Songjun Luo & Gang Yu, 1997. "On the Airline Schedule Perturbation Problem Caused by the Ground Delay Program," Transportation Science, INFORMS, vol. 31(4), pages 298-311, November.
    4. Ahmed Abdelghany & Goutham Ekollu & Ram Narasimhan & Khaled Abdelghany, 2004. "A Proactive Crew Recovery Decision Support Tool for Commercial Airlines During Irregular Operations," Annals of Operations Research, Springer, vol. 127(1), pages 309-331, March.
    5. Raïd Mansi & Saïd Hanafi & Christophe Wilbaut & François Clautiaux, 2012. "Disruptions in the airline industry: math-heuristics for re-assigning aircraft and passengers simultaneously," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(6), pages 690-712.
    6. Stojkovic, Goran & Soumis, François & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 779-788, November.
    7. Gang Yu & Michael Argüello & Gao Song & Sandra M. McCowan & Anna White, 2003. "A New Era for Crew Recovery at Continental Airlines," Interfaces, INFORMS, vol. 33(1), pages 5-22, February.
    8. Medard, Claude P. & Sawhney, Nidhi, 2007. "Airline crew scheduling from planning to operations," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1013-1027, December.
    9. Mirela Stojković & François Soumis & Jacques Desrosiers, 1998. "The Operational Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 32(3), pages 232-245, August.
    10. Niloofar Jafari & Seyed Hessameddin Zegordi, 2010. "The airline perturbation problem: considering disrupted passengers," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(2), pages 203-220, January.
    11. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    12. Michael F. Argüello & Jonathan F. Bard & Gang Yu, 1997. "A Grasp for Aircraft Routing in Response to Groundings and Delays," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 211-228, October.
    13. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haijun & Tan, Jie & Guo, Shuojia & Wang, Shenhao, 2018. "High-value transportation disruption risk management: Shipment insurance with declared value," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 293-310.
    2. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    3. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. Henry, 2016. "A math-heuristic algorithm for the integrated air service recovery," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 211-236.
    4. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    5. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    6. Nianyi Wang & Huiling Wang & Shan Pei & Boyu Zhang, 2023. "A Data-Driven Heuristic Method for Irregular Flight Recovery," Mathematics, MDPI, vol. 11(11), pages 1-22, June.
    7. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    8. Hu, Yuzhen & Song, Yan & Zhao, Kang & Xu, Baoguang, 2016. "Integrated recovery of aircraft and passengers after airline operation disruption based on a GRASP algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 97-112.
    9. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    10. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    2. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    3. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    4. Daniel Potthoff & Dennis Huisman & Guy Desaulniers, 2010. "Column Generation with Dynamic Duty Selection for Railway Crew Rescheduling," Transportation Science, INFORMS, vol. 44(4), pages 493-505, November.
    5. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    6. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    7. Nissen, Rüdiger & Haase, Knut, 2004. "Duty-period-based network model for airline crew rescheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 581, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Vaaben, Bo & Larsen, Jesper, 2015. "Mitigation of airspace congestion impact on airline networks," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 54-65.
    9. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    10. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    11. Stojkovic, Goran & Soumis, François & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 779-788, November.
    12. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    13. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
    14. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    16. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2017. "Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control," Transportation Science, INFORMS, vol. 51(4), pages 1259-1287, November.
    17. Chang, Shaw-Ching, 2012. "A duty based approach in solving the aircrew recovery problem," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 16-20.
    18. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. Henry, 2016. "A math-heuristic algorithm for the integrated air service recovery," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 211-236.
    19. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    20. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:233:y:2014:i:1:p:234-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.