IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i2p359-374.html
   My bibliography  Save this article

A stochastic multiscale model for electricity generation capacity expansion

Author

Listed:
  • Parpas, Panos
  • Webster, Mort

Abstract

Long-term planning for electric power systems, or capacity expansion, has traditionally been modeled using simplified models or heuristics to approximate the short-term dynamics. However, current trends such as increasing penetration of intermittent renewable generation and increased demand response requires a coupling of both the long and short term dynamics. We present an efficient method for coupling multiple temporal scales using the framework of singular perturbation theory for the control of Markov processes in continuous time. We show that the uncertainties that exist in many energy planning problems, in particular load demand uncertainty and uncertainties in generation availability, can be captured with a multiscale model. We then use a dimensionality reduction technique, which is valid if the scale separation present in the model is large enough, to derive a computationally tractable model. We show that both wind data and electricity demand data do exhibit sufficient scale separation. A numerical example using real data and a finite difference approximation of the Hamilton–Jacobi–Bellman equation is used to illustrate the proposed method. We compare the results of our approximate model with those of the exact model. We also show that the proposed approximation outperforms a commonly used heuristic used in capacity expansion models.

Suggested Citation

  • Parpas, Panos & Webster, Mort, 2014. "A stochastic multiscale model for electricity generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 232(2), pages 359-374.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:2:p:359-374
    DOI: 10.1016/j.ejor.2013.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713006036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, December.
    2. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    3. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    4. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    5. Zhang, Q. & Yin, G., 1997. "Structural properties of Markov chains with weak and strong interactions," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 181-197, October.
    6. Q. Zhang & G. Yin & E. K. Boukas, 1997. "Controlled Markov Chains with Weak and Strong Interactions: Asymptotic Optimality and Applications to Manufacturing," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 169-194, July.
    7. Stein W. Wallace & Stein-Erik Fleten, 2002. "Stochastic programming in energy," GE, Growth, Math methods 0201001, University Library of Munich, Germany, revised 13 Nov 2003.
    8. J. Jiang & S. P. Sethi, 1991. "A State Aggregation Approach to Manufacturing Systems Having Machine States with Weak and Strong Interactions," Operations Research, INFORMS, vol. 39(6), pages 970-978, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kettunen, Janne & Bunn, Derek W., 2016. "Risk induced resource dependency in capacity investments," European Journal of Operational Research, Elsevier, vol. 250(3), pages 914-924.
    2. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    3. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    4. Tsekrekos, Andrianos E. & Yannacopoulos, Athanasios N., 2016. "Optimal switching decisions under stochastic volatility with fast mean reversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 148-157.
    5. Pineda, Salvador & Morales, Juan M. & Boomsma, Trine K., 2016. "Impact of forecast errors on expansion planning of power systems with a renewables target," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1113-1122.
    6. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    7. Güner, Yusuf Emre, 2018. "The improved screening curve method regarding existing units," European Journal of Operational Research, Elsevier, vol. 264(1), pages 310-326.
    8. Gaïgi, M’hamed & Ly Vath, Vathana & Scotti, Simone, 2022. "Optimal harvesting under marine reserves and uncertain environment," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1181-1194.
    9. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    10. Xiaomin Xu & Dongxiao Niu & Jinpeng Qiu & Peng Wang & Yanchao Chen, 2016. "Analysis and Optimization of Power Supply Structure Based on Markov Chain and Error Optimization for Renewable Energy from the Perspective of Sustainability," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    11. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Moura Neto, F. & Souza, P. & de Magalhães, M.S., 2019. "Determining baseline profile by diffusion maps," European Journal of Operational Research, Elsevier, vol. 279(1), pages 107-123.
    13. Schulte Beerbühl, S. & Fröhling, M. & Schultmann, F., 2015. "Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies," European Journal of Operational Research, Elsevier, vol. 241(3), pages 851-862.
    14. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2020. "Cost minimization of large-scale infrastructure for electricity generation and transmission," Omega, Elsevier, vol. 96(C).
    15. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    16. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    17. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    2. Kovacevic, Raimund M. & Paraschiv, Florentina, 2012. "Medium-term Planning for Thermal Electricity Production," Working Papers on Finance 1220, University of St. Gallen, School of Finance.
    3. Raimund M. Kovacevic, 2019. "Valuation and pricing of electricity delivery contracts: the producer’s view," Annals of Operations Research, Springer, vol. 275(2), pages 421-460, April.
    4. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    5. Jodlbauer, Herbert & Altendorfer, Klaus, 2010. "Trade-off between capacity invested and inventory needed," European Journal of Operational Research, Elsevier, vol. 203(1), pages 118-133, May.
    6. Petersen, E. R. & Taylor, A. J., 2001. "An investment planning model for a new North-Central railway in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 847-862, November.
    7. Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
    8. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    9. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    10. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    11. Afanasyev, D. & Fedorova, E., 2018. "External and Internal Determinants on the Electricity Market: A Multi-Scale Adaptive Causal Analysis," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 33-54.
    12. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    13. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    14. Madlener, Reinhard & Stoverink, Simon, 2012. "Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization," Applied Energy, Elsevier, vol. 97(C), pages 124-134.
    15. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    16. Dawei (David) Zhang & Barrie R. Nault & Xueqi (David) Wei, 2019. "The Strategic Value of Information Technology in Setting Productive Capacity," Information Systems Research, INFORMS, vol. 30(4), pages 1124-1144, December.
    17. Li, Gang & Jiang, Hongxun & He, Tian, 2015. "A genetic algorithm-based decomposition approach to solve an integrated equipment-workforce-service planning problem," Omega, Elsevier, vol. 50(C), pages 1-17.
    18. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    19. Finn R. Førsund, 2015. "Hydropower Economics," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4899-7519-5, December.
    20. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:2:p:359-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.