IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i1p137-145.html
   My bibliography  Save this article

Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing

Author

Listed:
  • Pedrycz, Witold

Abstract

The highly diversified conceptual and algorithmic landscape of Granular Computing calls for the formation of sound fundamentals of the discipline, which cut across the diversity of formal frameworks (fuzzy sets, sets, rough sets) in which information granules are formed and processed. The study addresses this quest by introducing an idea of granular models – generalizations of numeric models that are formed as a result of an optimal allocation (distribution) of information granularity. Information granularity is regarded as a crucial design asset, which helps establish a better rapport of the resulting granular model with the system under modeling. A suite of modeling situations is elaborated on; they offer convincing examples behind the emergence of granular models. Pertinent problems showing how information granularity is distributed throughout the parameters of numeric functions (and resulting in granular mappings) are formulated as optimization tasks. A set of associated information granularity distribution protocols is discussed. We also provide a number of illustrative examples.

Suggested Citation

  • Pedrycz, Witold, 2014. "Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing," European Journal of Operational Research, Elsevier, vol. 232(1), pages 137-145.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:1:p:137-145
    DOI: 10.1016/j.ejor.2012.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712002482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrera, F. & Martinez, L. & Sanchez, P. J., 2005. "Managing non-homogeneous information in group decision making," European Journal of Operational Research, Elsevier, vol. 166(1), pages 115-132, October.
    2. Lingras, P. & Butz, C.J., 2010. "Rough support vector regression," European Journal of Operational Research, Elsevier, vol. 206(2), pages 445-455, October.
    3. Dembczynski, Krzysztof & Greco, Salvatore & Slowinski, Roman, 2009. "Rough set approach to multiple criteria classification with imprecise evaluations and assignments," European Journal of Operational Research, Elsevier, vol. 198(2), pages 626-636, October.
    4. Chiclana, F. & Herrera-Viedma, E. & Herrera, F. & Alonso, S., 2007. "Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 383-399, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Der-Chiang Li & Wu-Kuo Lin & Liang-Sian Lin & Chien-Chih Chen & Wen-Ting Huang, 2017. "The attribute-trend-similarity method to improve learning performance for small datasets," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1898-1913, April.
    2. Ouyang, Yao & Pedrycz, Witold, 2016. "A new model for intuitionistic fuzzy multi-attributes decision making," European Journal of Operational Research, Elsevier, vol. 249(2), pages 677-682.
    3. Zhaofeng Zhong & Ge Zhang & Li Yin & Yufeng Chen, 2023. "Description and Analysis of Data Security Based on Differential Privacy in Enterprise Power Systems," Mathematics, MDPI, vol. 11(23), pages 1-20, November.
    4. Dan Wang & Yukang Liu & Zhenhua Yu, 2023. "Synergistic Mechanism of Designing Information Granules with the Use of the Principle of Justifiable Granularity," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    5. Dias, Sónia & Brito, Paula, 2017. "Off the beaten track: A new linear model for interval data," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1118-1130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    2. Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
    3. Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
    4. Raquel González del Pozo & Luis C. Dias & José Luis García-Lapresta, 2020. "Using Different Qualitative Scales in a Multi-Criteria Decision-Making Procedure," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    5. Pingtao Yi & Qiankun Dong & Weiwei Li, 2021. "A family of IOWA operators with reliability measurement under interval-valued group decision-making environment," Group Decision and Negotiation, Springer, vol. 30(3), pages 483-505, June.
    6. Abbas Mardani & Mehrbakhsh Nilashi & Jurgita Antucheviciene & Madjid Tavana & Romualdas Bausys & Othman Ibrahim, 2017. "Recent Fuzzy Generalisations of Rough Sets Theory: A Systematic Review and Methodological Critique of the Literature," Complexity, Hindawi, vol. 2017, pages 1-33, October.
    7. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    8. B. Ahn & S. Choi, 2012. "Aggregation of ordinal data using ordered weighted averaging operator weights," Annals of Operations Research, Springer, vol. 201(1), pages 1-16, December.
    9. Xidonas, Panos & Doukas, Haris & Hassapis, Christis, 2021. "Grouped data, investment committees & multicriteria portfolio selection," Journal of Business Research, Elsevier, vol. 129(C), pages 205-222.
    10. Salvatore Corrente & Salvatore Greco & Roman Słowiński, 2017. "Handling imprecise evaluations in multiple criteria decision aiding and robust ordinal regression by n-point intervals," Fuzzy Optimization and Decision Making, Springer, vol. 16(2), pages 127-157, June.
    11. Du, Wen Sheng & Hu, Bao Qing, 2018. "A fast heuristic attribute reduction approach to ordered decision systems," European Journal of Operational Research, Elsevier, vol. 264(2), pages 440-452.
    12. Fabio Blanco-Mesa & Ernesto León-Castro & Jorge Romero-Muñoz, 2021. "Pythagorean Membership Grade Aggregation Operators: Application in Financial knowledge," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
    13. Yuan Li & Xiuwu Liao & Wenhong Zhao, 2009. "A rough set approach to knowledge discovery in analyzing competitive advantages of firms," Annals of Operations Research, Springer, vol. 168(1), pages 205-223, April.
    14. Neha Dimri & Himanshu Kaul & Daya Gupta, 2018. "MetaXplorer: an intelligent and adaptable metasearch engine using a novel ordered weighted averaging operator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1315-1325, December.
    15. Tien-Chin Wang & Hsiu-Chin Hsieh & Xuan-Huynh Nguyen & Chin-Ying Huang & Jen-Yao Lee, 2022. "Evaluating the Influence of Criteria Revitalization Strategy Implementation for the Hospitality Industry in the Post-Pandemic Era," World, MDPI, vol. 3(2), pages 1-18, April.
    16. Yi-Shian Lee & Lee-Ing Tong, 2012. "Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programming," Energies, MDPI, vol. 5(3), pages 1-16, February.
    17. Xu, Yitian, 2012. "A rough margin-based linear ν support vector regression," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 528-534.
    18. Khalid, Asma & Beg, Ismat, 2018. "Role of honesty and confined interpersonal influence in modelling predilections," MPRA Paper 95831, University Library of Munich, Germany, revised 10 Jan 2019.
    19. Zhen Zhang & Zhuolin Li, 2023. "Consensus-based TOPSIS-Sort-B for multi-criteria sorting in the context of group decision-making," Annals of Operations Research, Springer, vol. 325(2), pages 911-938, June.
    20. Lihong Wang & Zaiwu Gong, 2017. "Priority of a Hesitant Fuzzy Linguistic Preference Relation with a Normal Distribution in Meteorological Disaster Risk Assessment," IJERPH, MDPI, vol. 14(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:1:p:137-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.