IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v21y1985i3p330-338.html
   My bibliography  Save this article

Study of a multi-component system with failure interaction

Author

Listed:
  • Murthy, D. N. P.
  • Nguyen, D. G.

Abstract

No abstract is available for this item.

Suggested Citation

  • Murthy, D. N. P. & Nguyen, D. G., 1985. "Study of a multi-component system with failure interaction," European Journal of Operational Research, Elsevier, vol. 21(3), pages 330-338, September.
  • Handle: RePEc:eee:ejores:v:21:y:1985:i:3:p:330-338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(85)90153-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Arnold & Stefanka Chukova & Yu Hayakawa, 2016. "Failure distributions in multicomponent systems with imperfect repairs," Journal of Risk and Reliability, , vol. 230(1), pages 4-17, February.
    2. Min-Tsai Lai, 2009. "A discrete replacement model for a two-unit parallel system subject to failure rate interaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(3), pages 471-479, May.
    3. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2018. "Optimal imperfect maintenance cost analysis of a two-component system with failure interactions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 24-34.
    4. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    5. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    6. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Zhuoqi Zhang & Su Wu & Binfeng Li & Seungchul Lee, 2015. "(, ) type maintenance policy for multi-component systems with failure interactions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1051-1064, April.
    8. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    9. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Min-Tsai Lai & Huey Yan, 2016. "Optimal number of minimal repairs with cumulative repair cost limit for a two-unit system with failure rate interactions," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(2), pages 466-473, January.
    11. Lin Xie & Mary Ann Lundteigen & Yiliu Liu, 2020. "Reliability and barrier assessment of series–parallel systems subject to cascading failures," Journal of Risk and Reliability, , vol. 234(3), pages 455-469, June.
    12. Tazi, Nacef & Châtelet, Eric & Bouzidi, Youcef, 2018. "How combined performance and propagation of failure dependencies affect the reliability of a MSS," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 531-541.
    13. Wei Peng & Xiaoling Zhang & Hong-Zhong Huang, 2016. "A failure rate interaction model for two-component systems based on copula function," Journal of Risk and Reliability, , vol. 230(3), pages 278-284, June.
    14. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2017. "Maintenance analysis of a two-component load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 67-74.
    15. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    16. Pol, Johannes C. & Kindermann, Paulina & van der Krogt, Mark G. & van Bergeijk, Vera M. & Remmerswaal, Guido & Kanning, Willem & Jonkman, Sebastiaan N. & Kok, Matthijs, 2023. "The effect of interactions between failure mechanisms on the reliability of flood defenses," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:21:y:1985:i:3:p:330-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.