Advanced Search
MyIDEAS: Login to save this article or follow this journal

Feasibility in reverse convex mixed-integer programming


Author Info

  • Obuchowska, Wiesława T.
Registered author(s):


    In this paper we address the problem of the infeasibility of systems defined by reverse convex inequality constraints, where some or all of the variables are integer. In particular, we provide a polynomial algorithm that identifies a set of all constraints critical to feasibility (CF), that is constraints that may affect a feasibility status of the system after some perturbation of the right-hand sides. Furthermore, we will investigate properties of the irreducible infeasible sets and infeasibility sets, showing in particular that every irreducible infeasible set as well as infeasibility sets in the considered system, are subsets of the set CF of constraints critical to feasibility.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 218 (2012)
    Issue (Month): 1 ()
    Pages: 58-67

    as in new window
    Handle: RePEc:eee:ejores:v:218:y:2012:i:1:p:58-67

    Contact details of provider:
    Web page:

    Related research

    Keywords: Integer programming; Feasibility; Concave integer minimization; Reverse convex constraints; Sensitivity analysis; Irreducible infeasible sets;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Chakravarti, Nilotpal, 1994. "Some results concerning post-infeasibility analysis," European Journal of Operational Research, Elsevier, vol. 73(1), pages 139-143, February.
    2. Herbert E. Scarf, 1977. "An Observation on the Structure of Production Sets with Indivisibilities," Cowles Foundation Discussion Papers 453, Cowles Foundation for Research in Economics, Yale University.
    3. Wiesława Obuchowska, 2010. "Unboundedness in reverse convex and concave integer programming," Computational Statistics, Springer, vol. 72(2), pages 187-204, October.
    4. Wiesława Obuchowska, 2007. "Conditions for boundedness in concave programming under reverse convex and convex constraints," Computational Statistics, Springer, vol. 65(2), pages 261-279, April.
    5. Caron, R. J. & Obuchowska, W., 1992. "Unboundedness of a convex quadratic function subject to concave and convex quadratic constraints," European Journal of Operational Research, Elsevier, vol. 63(1), pages 114-123, November.
    6. Wiesława Obuchowska, 2010. "Minimal infeasible constraint sets in convex integer programs," Journal of Global Optimization, Springer, vol. 46(3), pages 423-433, March.
    7. Obuchowska, Wieslawa T., 1998. "Infeasibility analysis for systems of quadratic convex inequalities," European Journal of Operational Research, Elsevier, vol. 107(3), pages 633-643, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Obuchowska, Wiesława T., 2014. "Feasible partition problem in reverse convex and convex mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 235(1), pages 129-137.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:1:p:58-67. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.