IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i2p344-357.html
   My bibliography  Save this article

Cost-based decision-making in middleware virtualization environments

Author

Listed:
  • Dutta, Kaushik
  • VanderMeer, Debra

Abstract

Middleware virtualization refers to the process of running applications on a set of resources (e.g., databases, application servers, other transactional service resources) such that the resource-to-application binding can be changed dynamically on the basis of applications' resource requirements. Although virtualization is a rapidly growing area, little formal academic or industrial research provides guidelines for cost-optimal allocation strategies. In this work, we study this problem formally. We identify the problem and describe why existing schemes cannot be applied directly. We then formulate a mathematical model describing the business costs of virtualization. We develop runtime models of virtualization decision-making paradigms. We describe the cost implications of various runtime models and consider the cost effects of different managerial decisions and business factors, such as budget changes and changes in demand. Our results yield useful insights for managers in making virtualization decisions.

Suggested Citation

  • Dutta, Kaushik & VanderMeer, Debra, 2011. "Cost-based decision-making in middleware virtualization environments," European Journal of Operational Research, Elsevier, vol. 210(2), pages 344-357, April.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:344-357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00647-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi-Long Chen & George L. Vairaktarakis, 2005. "Integrated Scheduling of Production and Distribution Operations," Management Science, INFORMS, vol. 51(4), pages 614-628, April.
    2. Hak-Jin Kim & John Hooker, 2002. "Solving Fixed-Charge Network Flow Problems with a Hybrid Optimization and Constraint Programming Approach," Annals of Operations Research, Springer, vol. 115(1), pages 95-124, September.
    3. Kumar, Subodha & Dutta, Kaushik & Mookerjee, Vijay, 2009. "Maximizing business value by optimal assignment of jobs to resources in grid computing," European Journal of Operational Research, Elsevier, vol. 194(3), pages 856-872, May.
    4. Ravi Bapna & Sanjukta Das & Robert Garfinkel & Jan Stallaert, 2008. "A Market Design for Grid Computing," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 100-111, February.
    5. Polyakovsky, Sergey & M'Hallah, Rym, 2009. "An agent-based approach to the two-dimensional guillotine bin packing problem," European Journal of Operational Research, Elsevier, vol. 192(3), pages 767-781, February.
    6. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    7. Yao, Jianxin & Xiao, Lei & Nie, Chun & Wong, David Tung Chong & Chew, Yong Huat, 2008. "Resource allocation for end-to-end QoS provisioning in a hybrid wireless WCDMA and wireline IP-based DiffServ network," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1139-1160, December.
    8. Kumar, Subodha & Jacob, Varghese S. & Sriskandarajah, Chelliah, 2006. "Scheduling advertisements on a web page to maximize revenue," European Journal of Operational Research, Elsevier, vol. 173(3), pages 1067-1089, September.
    9. Havill, Jessen T. & Mao, Weizhen, 2008. "Competitive online scheduling of perfectly malleable jobs with setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1126-1142, June.
    10. Xiaoqiang Cai & Sean Zhou, 1999. "Stochastic Scheduling on Parallel Machines Subject to Random Breakdowns to Minimize Expected Costs for Earliness and Tardy Jobs," Operations Research, INFORMS, vol. 47(3), pages 422-437, June.
    11. Yves Pochet & Mathieu Van Vyve, 2004. "A General Heuristic for Production Planning Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 316-327, August.
    12. Ridouard, Frédéric & Richard, Pascal & Martineau, Patrick, 2008. "On-line scheduling on a batch processing machine with unbounded batch size to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1327-1342, September.
    13. Chung-Yee Lee & Lei Lei & Michael Pinedo, 1997. "Current trends in deterministic scheduling," Annals of Operations Research, Springer, vol. 70(0), pages 1-41, April.
    14. Averbakh, Igor, 2010. "On-line integrated production-distribution scheduling problems with capacitated deliveries," European Journal of Operational Research, Elsevier, vol. 200(2), pages 377-384, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan HRON & Tomas MACAK & Andrea JINDROVA, 2011. "The theory of preferential choice and its utilization in managerial decision-making," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 57(5), pages 211-216.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Ransbotham & Ishwar Murthy & Sabyasachi Mitra & Sridhar Narasimhan, 2011. "Sequential Grid Computing: Models and Computational Experiments," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 174-188, May.
    2. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    3. Xin Feng & Yongxi Cheng & Feifeng Zheng & Yinfeng Xu, 2016. "Online integrated production–distribution scheduling problems without preemption," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1569-1585, May.
    4. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    5. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    6. Kumar, Subodha & Dutta, Kaushik & Mookerjee, Vijay, 2009. "Maximizing business value by optimal assignment of jobs to resources in grid computing," European Journal of Operational Research, Elsevier, vol. 194(3), pages 856-872, May.
    7. Guo, Shouwei & Kang, Liying, 2010. "Online scheduling of malleable parallel jobs with setup times on two identical machines," European Journal of Operational Research, Elsevier, vol. 206(3), pages 555-561, November.
    8. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    9. Anna Ye Du & Sanjukta Das & R. Ramesh, 2013. "Efficient Risk Hedging by Dynamic Forward Pricing: A Study in Cloud Computing," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 625-642, November.
    10. Xiaoqiang Cai & Xianyi Wu & Xian Zhou, 2021. "Optimal unrestricted dynamic stochastic scheduling with partial losses of work due to breakdowns," Annals of Operations Research, Springer, vol. 298(1), pages 43-64, March.
    11. Javad Rezaeian & Reza Alizadeh Foroutan & Toraj Mojibi & Yacob Khojasteh, 2023. "Sensitivity Analysis of the Unrelated Parallel Machine Scheduling Problem with Rework Processes and Machine Eligibility Restrictions," SN Operations Research Forum, Springer, vol. 4(3), pages 1-24, September.
    12. Marko Ɖurasević & Domagoj Jakobović, 2019. "Creating dispatching rules by simple ensemble combination," Journal of Heuristics, Springer, vol. 25(6), pages 959-1013, December.
    13. Amorim, P. & Belo-Filho, M.A.F. & Toledo, F.M.B. & Almeder, C. & Almada-Lobo, B., 2013. "Lot sizing versus batching in the production and distribution planning of perishable goods," International Journal of Production Economics, Elsevier, vol. 146(1), pages 208-218.
    14. Dongni Li & Xianwen Meng & Miao Li & Yunna Tian, 2016. "An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 283-296, April.
    15. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    16. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    17. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    18. Jiafu Tang & Kai-Leung Yung & Iko Kaku & Jianbo Yang, 2008. "The scheduling of deliveries in a production-distribution system with multiple buyers," Annals of Operations Research, Springer, vol. 161(1), pages 5-23, July.
    19. A. Dolgui & M. Kovalyov & K. Shchamialiova, 2011. "Multi-product lot-sizing and sequencing on a single imperfect machine," Computational Optimization and Applications, Springer, vol. 50(3), pages 465-482, December.
    20. Azeddine Cheref & Alessandro Agnetis & Christian Artigues & Jean-Charles Billaut, 2017. "Complexity results for an integrated single machine scheduling and outbound delivery problem with fixed sequence," Journal of Scheduling, Springer, vol. 20(6), pages 681-693, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:344-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.