IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i3p584-594.html
   My bibliography  Save this article

A travel demand management strategy: The downtown space reservation system

Author

Listed:
  • Zhao, Y.
  • Triantis, K.
  • Teodorovic, D.
  • Edara, P.

Abstract

In this paper, a Travel Demand Management strategy known as the Downtown Space Reservation System (DSRS) is introduced. The purpose of this system is to facilitate the mitigation of traffic congestion in a cordon-based downtown area by requiring people who want to drive into this area to make reservations in advance. An integer programming formulation is provided to obtain the optimal mix of vehicles and trips that are characterized by a series of factors such as vehicle occupancy, departure time, and trip length with an objective of maximizing total system throughput and revenue. Based upon the optimal solution, an "intelligent" module is built using artificial neural networks that enables the transportation authority to make decisions in real time on whether to accept an incoming request. An example is provided that demonstrates that the solution of the "intelligent" module resembles the optimal solution with an acceptable error rate. Finally, implementation issues of the DSRS are addressed.

Suggested Citation

  • Zhao, Y. & Triantis, K. & Teodorovic, D. & Edara, P., 2010. "A travel demand management strategy: The downtown space reservation system," European Journal of Operational Research, Elsevier, vol. 205(3), pages 584-594, September.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:3:p:584-594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00034-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Pak & Nanda Piersma, 2002. "overview of OR techniques for airline revenue management," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(4), pages 479-495, November.
    2. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    3. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    4. Badinelli, Ralph D., 2000. "An optimal, dynamic policy for hotel yield management," European Journal of Operational Research, Elsevier, vol. 121(3), pages 476-503, March.
    5. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    6. May, A. D. & Liu, R. & Shepherd, S. P. & Sumalee, A., 2002. "The impact of cordon design on the performance of road pricing schemes," Transport Policy, Elsevier, vol. 9(3), pages 209-220, July.
    7. Gentile, Guido & Papola, Natale & Persia, Luca, 2005. "Advanced pricing and rationing policies for large scale multimodal networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 612-631.
    8. Li, Michael Z. F., 2001. "Pricing non-storable perishable goods by using a purchase restriction with an application to airline fare pricing," European Journal of Operational Research, Elsevier, vol. 134(3), pages 631-647, November.
    9. Ang, James S.K. & Cao, Chengxuan & Ye, Heng-Qing, 2007. "Model and algorithms for multi-period sea cargo mix problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1381-1393, August.
    10. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Wong, Jinn-Tsai, 1997. "Basic concepts for a system for advance booking for highway use," Transport Policy, Elsevier, vol. 4(2), pages 109-114, April.
    12. You, Peng-Sheng, 2008. "An efficient computational approach for railway booking problems," European Journal of Operational Research, Elsevier, vol. 185(2), pages 811-824, March.
    13. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    14. David Levinson, 2003. "The Value of Advanced Traveler Information Systems for Route Choice," Working Papers 200307, University of Minnesota: Nexus Research Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilz, Danny & Schwerdfeger, Stefan & Boysen, Nils, 2022. "Make or break: Coordinated assignment of parking space for breaks and rest periods in long-haul trucking," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 45-64.
    2. Teresa PAMUŁA, 2016. "Neural Networks In Transportation Research – Recent Applications," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 11(2), pages 27-36, June.
    3. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    4. Celikoglu, Hilmi Berk, 2013. "Reconstructing freeway travel times with a simplified network flow model alternating the adopted fundamental diagram," European Journal of Operational Research, Elsevier, vol. 228(2), pages 457-466.
    5. Fan, Wenbo & Xiao, Feng & Nie, Yu (Macro), 2022. "Managing bottleneck congestion with tradable credits under asymmetric transaction cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Li, Xinwei & Yang, Hai & Ke, Jintao, 2023. "Booking cum rationing strategy for equitable travel demand management in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 261-274.
    7. Chen, Dongxu & Sun, Yu & Yang, Zhongzhen, 2020. "Optimization of the travel ban scheme of cars based on the spatial distribution of the last digit of license plates," Transport Policy, Elsevier, vol. 94(C), pages 43-53.
    8. Y. Zhao & K. Triantis & P. Edara, 2010. "Evaluation of travel demand strategies: a microscopic traffic simulation approach," Transportation, Springer, vol. 37(3), pages 549-571, May.
    9. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
    10. Chen, Yinghao & Song, Xiaopeng & Cheng, Qixiu & An, Qinhe & Zhang, Yuan, 2021. "A cordon-based reservation system for urban traffic management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Younshik & Song, Taijin & Park, Jungsik, 2012. "Freeway booking policy: Public discourse and acceptability analysis," Transport Policy, Elsevier, vol. 24(C), pages 223-231.
    2. Valerio Lacagnina & Davide Provenzano, 2016. "An integrated fuzzy-stochastic model for revenue management," Tourism Economics, , vol. 22(4), pages 779-792, August.
    3. Irene Ng & Nick K.T. Yip, 2009. "Mechanism design in an integrated approach towards revenue management: the case of Empress Cruise Lines," The Service Industries Journal, Taylor & Francis Journals, vol. 31(3), pages 469-482, February.
    4. Chen, Anthony & Kasikitwiwat, Panatda, 2011. "Modeling capacity flexibility of transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 105-117, February.
    5. Ahlert, Klaus-Henning & Corsten, Hans & Gössinger, Ralf, 2009. "Capacity management in order-driven production networks--A flexibility-oriented approach to determine the size of a network capacity pool," International Journal of Production Economics, Elsevier, vol. 118(2), pages 430-441, April.
    6. Daniel Y. Mo & Stephen C. H. Ng & David Tai, 2019. "Revamping NetApp’s Service Parts Operations by Process Optimization," Service Science, INFORMS, vol. 49(6), pages 407-421, November.
    7. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    8. Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
    9. Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
    10. Modarres, Mohammad & Sharifyazdi, Mehdi, 2009. "Revenue management approach to stochastic capacity allocation problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 442-459, January.
    11. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    12. Meng, Qiang & Zhao, Hui & Wang, Yadong, 2019. "Revenue management for container liner shipping services: Critical review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 280-292.
    13. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    15. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    16. Haerian, Laila & Homem-de-Mello, Tito & Mount-Campbell, Clark A., 2006. "Modeling revenue yield of reservation systems that use nested capacity protection strategies," International Journal of Production Economics, Elsevier, vol. 104(2), pages 340-353, December.
    17. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    18. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    19. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    20. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:3:p:584-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.