IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v195y2009i2p394-411.html
   My bibliography  Save this article

Weighted search games

Author

Listed:
  • Zoroa, N.
  • Zoroa, P.
  • Fernández-Sáez, M.J.

Abstract

In this paper we shall deal with search games in which the strategic situation is developed on a lattice. The main characteristic of these games is that the points in each column of the lattice have a specific associated weight which directly affects the payoff function. Thus, the points in different columns represent points of different strategic value. We solve three different types of games. The first involves search, ambush and mixed situations, the second is a search and inspection game and the last is related to the accumulative games.

Suggested Citation

  • Zoroa, N. & Zoroa, P. & Fernández-Sáez, M.J., 2009. "Weighted search games," European Journal of Operational Research, Elsevier, vol. 195(2), pages 394-411, June.
  • Handle: RePEc:eee:ejores:v:195:y:2009:i:2:p:394-411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00191-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. J. Baston & A. Y. Garnaev, 1996. "A fast infiltration game on n arcs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 481-489, June.
    2. William H. Ruckle, 1992. "The Upper Risk of an Inspection Agreement," Operations Research, INFORMS, vol. 40(5), pages 877-884, October.
    3. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    4. P. Goutal & A. Garnaev & G. Garnaeva, 1997. "On the Infiltration Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(2), pages 215-221.
    5. John M. Auger, 1991. "An infiltration game on k arcs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 511-529, August.
    6. Zoroa, Noemi & Zoroa, Procopio & Jose Fernandez-Saez, M., 2003. "Raid games across a set with cyclic order," European Journal of Operational Research, Elsevier, vol. 145(3), pages 684-692, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leone, Pierre & Buwaya, Julia & Alpern, Steve, 2022. "Search-and-rescue rendezvous," European Journal of Operational Research, Elsevier, vol. 297(2), pages 579-591.
    2. Yolmeh, Abdolmajid & Baykal-Gürsoy, Melike, 2021. "Weighted network search games with multiple hidden objects and multiple search teams," European Journal of Operational Research, Elsevier, vol. 289(1), pages 338-349.
    3. Kyle Y. Lin & Michael P. Atkinson & Timothy H. Chung & Kevin D. Glazebrook, 2013. "A Graph Patrol Problem with Random Attack Times," Operations Research, INFORMS, vol. 61(3), pages 694-710, June.
    4. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    5. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2011. "A foraging problem: Sit-and-wait versus active predation," European Journal of Operational Research, Elsevier, vol. 208(2), pages 131-141, January.
    6. Alpern, Steve & Fokkink, Robbert & Simanjuntak, Martin, 2016. "Optimal search and ambush for a hider who can escape the search region," European Journal of Operational Research, Elsevier, vol. 251(3), pages 707-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    2. Alpern, Steve & Lidbetter, Thomas & Papadaki, Katerina, 2019. "Optimizing periodic patrols against short attacks on the line and other networks," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1065-1073.
    3. Steve Alpern & Alec Morton & Katerina Papadaki, 2011. "Patrolling Games," Operations Research, INFORMS, vol. 59(5), pages 1246-1257, October.
    4. V. J. Baston & A. Y. Garnaev, 1996. "A fast infiltration game on n arcs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 481-489, June.
    5. Vahideh Sadat Abedi, 2017. "Allocation of advertising budget between multiple channels to support sales in multiple markets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 134-146, February.
    6. R Bai & E K Burke & G Kendall, 2008. "Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1387-1397, October.
    7. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    8. K. Kikuta & W. H. Ruckle, 1997. "Accumulation Games, Part 1: Noisy Search," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 395-408, August.
    9. R. Pablo Arribillaga & G. Bergantiños, 2022. "Cooperative and axiomatic approaches to the knapsack allocation problem," Annals of Operations Research, Springer, vol. 318(2), pages 805-830, November.
    10. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    11. DePaolo, Concetta A. & Rader, David Jr., 2007. "A heuristic algorithm for a chance constrained stochastic program," European Journal of Operational Research, Elsevier, vol. 176(1), pages 27-45, January.
    12. Polyakovskiy, S. & Neumann, F., 2017. "The Packing While Traveling Problem," European Journal of Operational Research, Elsevier, vol. 258(2), pages 424-439.
    13. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
    14. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.
    15. Jérémie Gallien & Adam J. Mersereau & Andres Garro & Alberte Dapena Mora & Martín Nóvoa Vidal, 2015. "Initial Shipment Decisions for New Products at Zara," Operations Research, INFORMS, vol. 63(2), pages 269-286, April.
    16. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    17. Edwin Romeijn, H. & Zeynep Sargut, F., 2011. "The stochastic transportation problem with single sourcing," European Journal of Operational Research, Elsevier, vol. 214(2), pages 262-272, October.
    18. Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
    19. Zhang, Bin & Hua, Zhongsheng, 2008. "A unified method for a class of convex separable nonlinear knapsack problems," European Journal of Operational Research, Elsevier, vol. 191(1), pages 1-6, November.
    20. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:195:y:2009:i:2:p:394-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.