IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v125y2000i1p216-217.html
   My bibliography  Save this article

A note on "Project scheduling with resource constraints: A branch and bound approach"

Author

Listed:
  • Kaefer, Frederick

Abstract

No abstract is available for this item.

Suggested Citation

  • Kaefer, Frederick, 2000. "A note on "Project scheduling with resource constraints: A branch and bound approach"," European Journal of Operational Research, Elsevier, vol. 125(1), pages 216-217, August.
  • Handle: RePEc:eee:ejores:v:125:y:2000:i:1:p:216-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(99)00202-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christofides, Nicos & Alvarez-Valdes, R. & Tamarit, J. M., 1987. "Project scheduling with resource constraints: A branch and bound approach," European Journal of Operational Research, Elsevier, vol. 29(3), pages 262-273, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    2. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    3. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    4. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    5. Kolisch, Rainer, 1994. "Serial and parallel resource-constrained projekt scheduling methodes revisited: Theory and computation," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 344, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Simpson, Wendell P. & Patterson, James H., 1996. "A multiple-tree search procedure for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 89(3), pages 525-542, March.
    7. Mori, Masao & Tseng, Ching Chih, 1997. "A genetic algorithm for multi-mode resource constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 134-141, July.
    8. Luh, Peter B. & Liu, Feng & Moser, Bryan, 1999. "Scheduling of design projects with uncertain number of iterations," European Journal of Operational Research, Elsevier, vol. 113(3), pages 575-592, March.
    9. Kreter, Stefan & Schutt, Andreas & Stuckey, Peter J. & Zimmermann, Jürgen, 2018. "Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 472-486.
    10. Brucker, Peter & Knust, Sigrid & Schoo, Arno & Thiele, Olaf, 1998. "A branch and bound algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 272-288, June.
    11. Drexl, Andreas & Kimms, Alf, 1998. "Minimizing total weighted completion times subject to precedence constraints by dynamic programming," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 475, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Klein, Robert & Scholl, Armin, 1999. "Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 112(2), pages 322-346, January.
    13. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    14. Böttcher, Jan & Drexl, Andreas & Kolisch, Rainer & Salewski, Frank, 1996. "Project scheduling under partially renewable resource constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 398, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Moehring, Rolf & Uetz, Marc & Stork, Frederik & Schulz, Andreas S., 2002. "Solving Project Scheduling Problems by Minimum Cut," Working papers 4231-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    17. Kolisch, Rainer, 1994. "Efficient priority rules for the resource-constrained project scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 350, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Maria Ayala & Abir Benabid & Christian Artigues & Claire Hanen, 2013. "The resource-constrained modulo scheduling problem: an experimental study," Computational Optimization and Applications, Springer, vol. 54(3), pages 645-673, April.
    19. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    20. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:125:y:2000:i:1:p:216-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.