IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v123y2000i1p145-153.html
   My bibliography  Save this article

Dynamic programming using the Fritz-John conditions

Author

Listed:
  • Steiner, Erich
  • McKinnon, Ken

Abstract

No abstract is available for this item.

Suggested Citation

  • Steiner, Erich & McKinnon, Ken, 2000. "Dynamic programming using the Fritz-John conditions," European Journal of Operational Research, Elsevier, vol. 123(1), pages 145-153, May.
  • Handle: RePEc:eee:ejores:v:123:y:2000:i:1:p:145-153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(99)00088-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    2. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    2. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    3. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    4. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    5. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    6. Mustafa Doğru & A. Kok & G. Houtum, 2013. "Newsvendor characterizations for one-warehouse multi-retailer inventory systems with discrete demand under the balance assumption," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 541-559, September.
    7. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    8. D. Babusiaux, 1988. "Financing investment and calculations of profitability [Financement des investissements et calculs de rentabilité]," Working Papers hal-01534450, HAL.
    9. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    10. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    11. Becker, Henrique & Buriol, Luciana S., 2019. "An empirical analysis of exact algorithms for the unbounded knapsack problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 84-99.
    12. Gomory, Ralph, 2016. "Origin and early evolution of corner polyhedra," European Journal of Operational Research, Elsevier, vol. 253(3), pages 543-556.
    13. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    14. Koushik Ramakrishna & Moosa Sharafali & Yun Lim, 2015. "A two-item two-warehouse periodic review inventory model with transshipment," Annals of Operations Research, Springer, vol. 233(1), pages 365-381, October.
    15. Thanh Luong & Frederic H. Murphy & Reginald Sanders & Susan H. Holte & Peter Whitman, 1998. "Modeling the Impacts of the 1990 Clean Air Act Amendments," Interfaces, INFORMS, vol. 28(2), pages 1-15, April.
    16. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    17. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    18. Wilbaut, Christophe & Todosijevic, Raca & Hanafi, Saïd & Fréville, Arnaud, 2023. "Heuristic and exact reduction procedures to solve the discounted 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 901-911.
    19. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.
    20. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:123:y:2000:i:1:p:145-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.