IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v117y1999i3p470-484.html
   My bibliography  Save this article

Variance of the output as a function of time: Production line dynamics

Author

Listed:
  • Tan, Bar[iota]s

Abstract

No abstract is available for this item.

Suggested Citation

  • Tan, Bar[iota]s, 1999. "Variance of the output as a function of time: Production line dynamics," European Journal of Operational Research, Elsevier, vol. 117(3), pages 470-484, September.
  • Handle: RePEc:eee:ejores:v:117:y:1999:i:3:p:470-484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00266-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. J. Miltenburg, 1987. "Variance of the number of units produced on a transfer line with buffer inventories during a period of length T," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(6), pages 811-822, December.
    2. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    3. Tan, Baris, 1997. "Variance of the throughput of an N-station production line with no intermediate buffers and time dependent failures," European Journal of Operational Research, Elsevier, vol. 101(3), pages 560-576, September.
    4. Izak Duenyas & Wallace J. Hopp & Mark L. Spearman, 1993. "Characterizing the Output Process of a CONWIP Line with Deterministic Processing and Random Outages," Management Science, INFORMS, vol. 39(8), pages 975-988, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xin-Feng & Wu, Su & Li, Quan-Lin, 2007. "Production variability of production lines," International Journal of Production Economics, Elsevier, vol. 107(1), pages 78-87, May.
    2. Hautphenne, Sophie & Kerner, Yoav & Nazarathy, Yoni & Taylor, Peter, 2015. "The intercept term of the asymptotic variance curve for some queueing output processes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 455-464.
    3. Kleijnen, J.P.C. & Gaury, E.G.A., 2000. "Short-Term Robustness of Production Management Systems : New Methodology," Other publications TiSEM 984854b7-9f75-4b46-a279-2, Tilburg University, School of Economics and Management.
    4. Chen, Chin-Tai & Yuan, John, 2004. "Transient throughput analysis for a series type system of machines in terms of alternating renewal processes," European Journal of Operational Research, Elsevier, vol. 155(1), pages 178-197, May.
    5. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.
    6. Nourelfath, Mustapha, 2011. "Service level robustness in stochastic production planning under random machine breakdowns," European Journal of Operational Research, Elsevier, vol. 212(1), pages 81-88, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Baris, 1998. "Effects of variability on the due-time performance of a continuous materials flow production system in series," International Journal of Production Economics, Elsevier, vol. 54(1), pages 87-100, January.
    2. He, Xin-Feng & Wu, Su & Li, Quan-Lin, 2007. "Production variability of production lines," International Journal of Production Economics, Elsevier, vol. 107(1), pages 78-87, May.
    3. Farhood Rismanchian & Young Hoon Lee, 2018. "Moment-based approximations for first- and second-order transient performance measures of an unreliable workstation," Operational Research, Springer, vol. 18(1), pages 75-95, April.
    4. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    5. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    6. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Chen, Chin-Tai & Yuan, John, 2004. "Transient throughput analysis for a series type system of machines in terms of alternating renewal processes," European Journal of Operational Research, Elsevier, vol. 155(1), pages 178-197, May.
    8. Tan, Baris, 1997. "Variance of the throughput of an N-station production line with no intermediate buffers and time dependent failures," European Journal of Operational Research, Elsevier, vol. 101(3), pages 560-576, September.
    9. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    10. Sumi Kim & Seongmoon Kim, 2015. "Differentiated waiting time management according to patient class in an emergency care center using an open Jackson network integrated with pooling and prioritizing," Annals of Operations Research, Springer, vol. 230(1), pages 35-55, July.
    11. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    12. Hautphenne, Sophie & Kerner, Yoav & Nazarathy, Yoni & Taylor, Peter, 2015. "The intercept term of the asymptotic variance curve for some queueing output processes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 455-464.
    13. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    14. Park, Chan-Woo & Lee, Hyo-Seong, 2013. "Performance evaluation of a multi-product CONWIP assembly system with correlated external demands," International Journal of Production Economics, Elsevier, vol. 144(1), pages 334-344.
    15. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    16. Duri, Christelle & Frein, Yannick & Lee, Hyo-Seong, 2000. "Performance evaluation and design of a CONWIP system with inspections," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 219-229, March.
    17. Jeffrey M. Alden & Lawrence D. Burns & Theodore Costy & Richard D. Hutton & Craig A. Jackson & David S. Kim & Kevin A. Kohls & Jonathan H. Owen & Mark A. Turnquist & David J. Vander Veen, 2006. "General Motors Increases Its Production Throughput," Interfaces, INFORMS, vol. 36(1), pages 6-25, February.
    18. Nan Chen & Yuan Yuan & Shiyu Zhou, 2011. "Performance analysis of queue length monitoring of M/G/1 systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 782-794, December.
    19. Carlos Chaves & Abhijit Gosavi, 2022. "On general multi-server queues with non-poisson arrivals and medium traffic: a new approximation and a COVID-19 ventilator case study," Operational Research, Springer, vol. 22(5), pages 5205-5229, November.
    20. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:117:y:1999:i:3:p:470-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.