Advanced Search
MyIDEAS: Login to save this article or follow this journal

Regularization of nonparametric frontier estimators

Contents:

Author Info

  • Daouia, Abdelaati
  • Florens, Jean-Pierre
  • Simar, Léopold

Abstract

In production theory and efficiency analysis, we estimate the production frontier, the locus of the maximal attainable level of an output (the production), given a set of inputs (the production factors). In other setups, we estimate rather an input (or cost) frontier, the minimal level of the input (cost) attainable for a given set of outputs (goods or services produced). In both cases the problem can be viewed as estimating a surface under shape constraints (monotonicity, …). In this paper we derive the theory of an estimator of the frontier having an asymptotic normal distribution. It is based on the order-m partial frontier where we let the order m to converge to infinity when n→∞ but at a slow rate. The final estimator is then corrected for its inherent bias. We thus can view our estimator as a regularized frontier. In addition, the estimator is more robust to extreme values and outliers than the usual nonparametric frontier estimators, like FDH and than the unregularized order-mn estimator of Cazals et al. (2002) converging to the frontier with a Weibull distribution if mn→∞ fast enough when n→∞. The performances of our estimators are evaluated in finite samples and compared to other estimators through some Monte-Carlo experiments, showing a better behavior (in terms of robustness, bias, MSE and achieved coverage of the resulting confidence intervals). The practical implementation and the robustness properties are illustrated through simulated data sets but also with a real data set.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0304407612000425
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 168 (2012)
Issue (Month): 2 ()
Pages: 285-299

as in new window
Handle: RePEc:eee:econom:v:168:y:2012:i:2:p:285-299

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords: Production function; Free Disposal Hull; Nonparametric frontier; Robust estimation; Extreme value index;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Abdelaati Daouia & Irène Gijbels, 2011. "Robustness and inference in nonparametric partial-frontier modeling," Post-Print peer-00796744, HAL.
  2. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1663-1697, December.
  3. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
  4. Daouia, Abdelaati & Simar, Léopold, 2005. "Robust nonparametric estimators of monotone boundaries," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 311-331, October.
  5. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
  6. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(02), pages 358-389, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Anna Simoni & Jean-Pierre Florens, 2013. "Regularizing Priors for Linear Inverse Problems," THEMA Working Papers 2013-32, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  2. Jean-Pierre Florens & Anna Simoni, 2013. "Regularizing Priors for Linear Inverse Problems," Working Papers hal-00873180, HAL.
  3. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
  4. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
  5. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:168:y:2012:i:2:p:285-299. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.