IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v147y2008i1p99-103.html
   My bibliography  Save this article

A complete asymptotic series for the autocovariance function of a long memory process

Author

Listed:
  • Lieberman, Offer
  • Phillips, Peter C.B.

Abstract

An infinite-order asymptotic expansion is given for the autocovariance function of a general stationary long-memory process with memory parameter d[set membership, variant](-1/2,1/2). The class of spectral densities considered includes as a special case the stationary and invertible ARFIMA(p,d,q) model. The leading term of the expansion is of the order O(1/k1-2d), where k is the autocovariance order, consistent with the well known power law decay for such processes, and is shown to be accurate to an error of O(1/k3-2d). The derivation uses Erdélyi's [Erdélyi, A., 1956. Asymptotic Expansions. Dover Publications, Inc, New York] expansion for Fourier-type integrals when there are critical points at the boundaries of the range of integration - here the frequencies {0,2[pi]}. Numerical evaluations show that the expansion is accurate even for small k in cases where the autocovariance sequence decays monotonically, and in other cases for moderate to large k. The approximations are easy to compute across a variety of parameter values and models.

Suggested Citation

  • Lieberman, Offer & Phillips, Peter C.B., 2008. "A complete asymptotic series for the autocovariance function of a long memory process," Journal of Econometrics, Elsevier, vol. 147(1), pages 99-103, November.
  • Handle: RePEc:eee:econom:v:147:y:2008:i:1:p:99-103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00127-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Offer Lieberman & Peter Phillips, 2008. "Refined Inference on Long Memory in Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
    3. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606.
    4. Peter C. B. Phillips, 2005. "Econometric Analysis of Fisher's Equation," American Journal of Economics and Sociology, Wiley Blackwell, vol. 64(1), pages 125-168, January.
    5. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(3), pages 299-336, June.
    6. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    7. Lieberman, Offer & Phillips, Peter C.B., 2004. "Expansions For The Distribution Of The Maximum Likelihood Estimator Of The Fractional Difference Parameter," Econometric Theory, Cambridge University Press, vol. 20(3), pages 464-484, June.
    8. Offer Lieberman & Peter C. B. Phillips, 2005. "Expansions for approximate maximum likelihood estimators of the fractional difference parameter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 367-379, December.
    9. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590.
    10. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," LIDAM Reprints CORE 1594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    12. Gilles Teyssière & Alan P. Kirman (ed.), 2007. "Long Memory in Economics," Springer Books, Springer, number 978-3-540-34625-8, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phillips, Peter C.B., 2009. "Long memory and long run variation," Journal of Econometrics, Elsevier, vol. 151(2), pages 150-158, August.
    2. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    3. Hurvich, Cliiford & Wang, Yi, 2006. "A Pure-Jump Transaction-Level Price Model Yielding Cointegration, Leverage, and Nonsynchronous Trading Effects," MPRA Paper 1413, University Library of Munich, Germany.
    4. Javier Contreras-Reyes & Wilfredo Palma, 2013. "Statistical analysis of autoregressive fractionally integrated moving average models in R," Computational Statistics, Springer, vol. 28(5), pages 2309-2331, October.
    5. Chevillon, Guillaume & Mavroeidis, Sophocles, 2018. "Perpetual learning and apparent long memory," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 343-365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    2. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    3. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    4. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    5. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    6. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    7. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    8. Mielniczuk, J. & Wojdyllo, P., 2007. "Estimation of Hurst exponent revisited," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4510-4525, May.
    9. Gil-Alana, Luis A., 2008. "A simple non-linear model with fractional integration for financial time series data," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 838-848, December.
    10. Cunado, J. & Gil-Alana, L.A. & Gracia, Fernando Perez de, 2010. "Mean reversion in stock market prices: New evidence based on bull and bear markets," Research in International Business and Finance, Elsevier, vol. 24(2), pages 113-122, June.
    11. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    13. G. Mesters & S. J. Koopman & M. Ooms, 2016. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
    14. Guglielmo Maria Caporale & Marinko Skare, 2014. "Long Memory in UK Real GDP, 1851-2013: An ARFIMA-FIGARCH Analysis," Discussion Papers of DIW Berlin 1395, DIW Berlin, German Institute for Economic Research.
    15. Kirman, Alan & Teyssiere, Gilles, 2005. "Testing for bubbles and change-points," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 765-799, April.
    16. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    17. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    18. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    19. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    20. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.

    More about this item

    Keywords

    Autocovariance Asymptotic expansion Critical point Fourier integral Long memory;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:147:y:2008:i:1:p:99-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.