Advanced Search
MyIDEAS: Login

Methods for inference in large multiple-equation Markov-switching models

Contents:

Author Info

  • Sims, Christopher A.
  • Waggoner, Daniel F.
  • Zha, Tao

Abstract

Inference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely to appear in smaller models. Our framework allows for many regimes in the transition matrix, without letting the number of free parameters grow as the square as the number of regimes, but also without losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains why existing methods are unreliable. It makes suggestions for maximizing posterior density and initiating MCMC simulations that provide robustness against the complex likelihood shape.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VC0-4TDC0J6-1/2/bdbfe1b4242790c2b16baf9c63acb9fd
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 146 (2008)
Issue (Month): 2 (October)
Pages: 255-274

as in new window
Handle: RePEc:eee:econom:v:146:y:2008:i:2:p:255-274

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords: Density overlap New MHM Incremental and discontinuous changes Composite Markov process Integrated-out likelihood;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Waggoner, Daniel F. & Zha, Tao, 2003. "Likelihood preserving normalization in multiple equation models," Journal of Econometrics, Elsevier, vol. 114(2), pages 329-347, June.
  2. Roger E.A. Farmer & Daniel F. Waggoner & Tao Zha, 2008. "Minimal state variable solutions to Markov-switching rational expectations models," Working Paper 2008-23, Federal Reserve Bank of Atlanta.
  3. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  4. Thomas Sargent & Noah Williams & Tao Zha, 2006. "The conquest of South American inflation," Working Paper 2006-20, Federal Reserve Bank of Atlanta.
  5. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
  6. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
  7. Thomas Lubik & Frank Schorfheide, 2002. "Testing for Indeterminacy:An Application to U.S. Monetary Policy," Economics Working Paper Archive 480, The Johns Hopkins University,Department of Economics, revised Jun 2003.
  8. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
  9. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
  10. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2004. "Normalization in econometrics," Working Paper 2004-13, Federal Reserve Bank of Atlanta.
  11. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
  12. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
  13. Giordani, Paolo & Kohn, Robert, 2006. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Working Paper Series 196, Sveriges Riksbank (Central Bank of Sweden).
  14. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  15. Alejandro Justiniano & Giorgio E. Primiceri, 2006. "The Time Varying Volatility of Macroeconomic Fluctuations," NBER Working Papers 12022, National Bureau of Economic Research, Inc.
  16. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," Working Paper 96-13, Federal Reserve Bank of Atlanta.
  17. Frank Schorfheide, 2003. "Learning and monetary policy shifts," Working Paper 2003-23, Federal Reserve Bank of Atlanta.
  18. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  19. Richard Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," NBER Working Papers 6442, National Bureau of Economic Research, Inc.
  20. John C. Robertson & Ellis W. Tallman, 1999. "Improving forecasts of the federal funds rate in a policy model," Working Paper 99-3, Federal Reserve Bank of Atlanta.
  21. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
  22. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  23. Christopher A. Sims & Tao Zha, 2004. "MCMC method for Markov mixture simultaneous-equation models: a note," Working Paper 2004-15, Federal Reserve Bank of Atlanta.
  24. John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
  25. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
  26. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  27. Canova, Fabio & Gambetti, Luca, 2006. "Structural Changes in the US Economy: Bad Luck or Bad Policy?," CEPR Discussion Papers 5457, C.E.P.R. Discussion Papers.
  28. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
  29. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  30. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:146:y:2008:i:2:p:255-274. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.