IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v109y2010i2p99-101.html
   My bibliography  Save this article

Intellectual property protection and innovation: an inverted-U relationship

Author

Listed:
  • Furukawa, Yuichi

Abstract

This paper shows in an endogenous growth model without scale effects that the relationship between intellectual property protection and innovation can be inverted-U-shaped. The inverted-U relationship emerges from an interaction between learning-driven and R&D-driven technological advances.

Suggested Citation

  • Furukawa, Yuichi, 2010. "Intellectual property protection and innovation: an inverted-U relationship," Economics Letters, Elsevier, vol. 109(2), pages 99-101, November.
  • Handle: RePEc:eee:ecolet:v:109:y:2010:i:2:p:99-101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(10)00301-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Philippe Aghion & Nick Bloom & Richard Blundell & Rachel Griffith & Peter Howitt, 2005. "Competition and Innovation: an Inverted-U Relationship," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 701-728.
    3. Furukawa, Yuichi, 2007. "The protection of intellectual property rights and endogenous growth: Is stronger always better?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3644-3670, November.
    4. Ryo Horii & Tatsuro Iwaisako, 2007. "Economic Growth with Imperfect Protection of Intellectual Property Rights," Journal of Economics, Springer, vol. 90(1), pages 45-85, January.
    5. Charles I. Jones, 1995. "Time Series Tests of Endogenous Growth Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 495-525.
    6. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    7. Peretto, Pietro F, 1998. "Technological Change and Population Growth," Journal of Economic Growth, Springer, vol. 3(4), pages 283-311, December.
    8. Kwan, Yum K. & Lai, Edwin L. -C., 2003. "Intellectual property rights protection and endogenous economic growth," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 853-873, March.
    9. Helpman, Elhanan, 1993. "Innovation, Imitation, and Intellectual Property Rights," Econometrica, Econometric Society, vol. 61(6), pages 1247-1280, November.
    10. Makoto Yano, 2009. "The Foundation Of Market Quality Economics," The Japanese Economic Review, Japanese Economic Association, vol. 60(1), pages 1-32, March.
    11. Josh Lerner, 2009. "The Empirical Impact of Intellectual Property Rights on Innovation: Puzzles and Clues," American Economic Review, American Economic Association, vol. 99(2), pages 343-348, May.
    12. Ted O'Donoghue & Josef Zweimueller, 2004. "Patents in a Model of Endogenous Growth," Journal of Economic Growth, Springer, vol. 9(1), pages 81-123, March.
    13. James Bessen & Eric Maskin, 2009. "Sequential innovation, patents, and imitation," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 611-635, December.
    14. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    15. Futagami, Koichi & Iwaisako, Tatsuro, 2007. "Dynamic analysis of patent policy in an endogenous growth model," Journal of Economic Theory, Elsevier, vol. 132(1), pages 306-334, January.
    16. Makoto Yano, 2008. "Competitive fairness and the concept of a fair price under Delaware law on M&A," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(2), pages 175-190, June.
    17. Angus Chu, 2009. "Effects of blocking patents on R&D: a quantitative DGE analysis," Journal of Economic Growth, Springer, vol. 14(1), pages 55-78, March.
    18. Pietro Peretto & Sjak Smulders, 2002. "Technological Distance, Growth And Scale Effects," Economic Journal, Royal Economic Society, vol. 112(481), pages 603-624, July.
    19. Angus Chu, 2010. "Effects of patent length on R&D: a quantitative DGE analysis," Journal of Economics, Springer, vol. 99(2), pages 117-140, March.
    20. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    21. Horowitz, Andrew W & Lai, Edwin L-C, 1996. "Patent Length and the Rate of Innovation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(4), pages 785-801, November.
    22. Lai, Edwin L. -C., 1998. "International intellectual property rights protection and the rate of product innovation," Journal of Development Economics, Elsevier, vol. 55(1), pages 133-153, February.
    23. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    24. Peter Howitt, 1999. "Steady Endogenous Growth with Population and R & D Inputs Growing," Journal of Political Economy, University of Chicago Press, vol. 107(4), pages 715-730, August.
    25. Eaton, Jonathan & Kortum, Samuel, 1999. "International Technology Diffusion: Theory and Measurement," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 537-570, August.
    26. Dinopoulos, Elias & Thompson, Peter, 1998. "Schumpeterian Growth without Scale Effects," Journal of Economic Growth, Springer, vol. 3(4), pages 313-335, December.
    27. Akiyama, Taro & Furukawa, Yuichi, 2009. "Intellectual property rights and appropriability of innovation," Economics Letters, Elsevier, vol. 103(3), pages 138-141, June.
    28. Yi Qian, 2007. "Do National Patent Laws Stimulate Domestic Innovation in a Global Patenting Environment? A Cross-Country Analysis of Pharmaceutical Patent Protection, 1978-2002," The Review of Economics and Statistics, MIT Press, vol. 89(3), pages 436-453, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2014. "Stage-dependent intellectual property rights," Journal of Development Economics, Elsevier, vol. 106(C), pages 239-249.
    2. Hudson, John & Minea, Alexandru, 2013. "Innovation, Intellectual Property Rights, and Economic Development: A Unified Empirical Investigation," World Development, Elsevier, vol. 46(C), pages 66-78.
    3. Angus Chu & Guido Cozzi & Chih-Hsing Liao, 2013. "Endogenous fertility and human capital in a Schumpeterian growth model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(1), pages 181-202, January.
    4. Hu, Mei-Ying & Lu, You-Xun & Lai, Ching-chong, 2023. "Patent term extensions and commercialization lags in the pharmaceutical industry: A growth-theoretic analysis," Journal of Macroeconomics, Elsevier, vol. 76(C).
    5. Ang, James B., 2010. "Financial Reforms, Patent Protection, and Knowledge Accumulation in India," World Development, Elsevier, vol. 38(8), pages 1070-1081, August.
    6. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2012. "Does intellectual monopoly stimulate or stifle innovation?," European Economic Review, Elsevier, vol. 56(4), pages 727-746.
    7. Angus C. Chu & Yuichi Furukawa & Lei Ji, 2016. "Patents, R&D subsidies, and endogenous market structure in a schumpeterian economy," Southern Economic Journal, John Wiley & Sons, vol. 82(3), pages 809-825, January.
    8. Chu, Angus C. & Cozzi, Guido & Galli, Silvia, 2012. "Does intellectual monopoly stimulate or stifle innovation?," European Economic Review, Elsevier, vol. 56(4), pages 727-746.
    9. Lin, Hwan C. & Shampine, L.F., 2014. "Finite-length Patents and Functional Differential Equations in a Non-scale R&D-based Growth Model," MPRA Paper 61603, University Library of Munich, Germany.
    10. Guido Cozzi & Silvia Galli, 2014. "Sequential R&D and blocking patents in the dynamics of growth," Journal of Economic Growth, Springer, vol. 19(2), pages 183-219, June.
    11. Chu, Angus C. & Furukawa, Yuichi, 2011. "On the optimal mix of patent instruments," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1964-1975.
    12. Chu, Angus C. & Leung, Charles K.Y. & Tang, Edward, 2012. "Intellectual property rights, technical progress and the volatility of economic growth," Journal of Macroeconomics, Elsevier, vol. 34(3), pages 749-756.
    13. Furukawa, Yuichi, 2007. "The protection of intellectual property rights and endogenous growth: Is stronger always better?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3644-3670, November.
    14. Davis, Lewis S. & Şener, Fuat, 2012. "Private patent protection in the theory of Schumpeterian growth," European Economic Review, Elsevier, vol. 56(7), pages 1446-1460.
    15. Akimoto, Kiyoka & Morimoto, Takaaki, 2020. "Examination and Approval of New Patents in an Endogenous Growth Model," Economic Modelling, Elsevier, vol. 91(C), pages 100-109.
    16. Elie Gray & André Grimaud, 2014. "The Lindahl Equilibrium in Schumpeterian Growth Models: Knowledge Diffusion, Social Value of Innovations and Optimal R&D Incentives," CESifo Working Paper Series 4678, CESifo.
    17. Lu, You-Xun & Lai, Ching-Chong, 2021. "Effects of patent policy on growth and inequality: A perspective of exogenous and endogenous quality improvements," MPRA Paper 111183, University Library of Munich, Germany.
    18. Hwan C. Lin & L. F. Shampine, 2018. "R&D-based Calibrated Growth Models with Finite-Length Patents: A Novel Relaxation Algorithm for Solving an Autonomous FDE System of Mixed Type," Computational Economics, Springer;Society for Computational Economics, vol. 51(1), pages 123-158, January.
    19. Chu, Angus C. & Pan, Shiyuan, 2013. "The Escape-Infringement Effect Of Blocking Patents On Innovation And Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 17(4), pages 955-969, June.
    20. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:109:y:2010:i:2:p:99-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.