IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v89y2013icp33-42.html
   My bibliography  Save this article

The incentives for supply chain collaboration to improve material efficiency in the use of steel: An analysis using input output techniques

Author

Listed:
  • Skelton, Alexandra C.H.
  • Allwood, Julian M.

Abstract

In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency — reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input–output techniques are applied to the GTAP 7 multi-regional input–output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered.

Suggested Citation

  • Skelton, Alexandra C.H. & Allwood, Julian M., 2013. "The incentives for supply chain collaboration to improve material efficiency in the use of steel: An analysis using input output techniques," Ecological Economics, Elsevier, vol. 89(C), pages 33-42.
  • Handle: RePEc:eee:ecolec:v:89:y:2013:i:c:p:33-42
    DOI: 10.1016/j.ecolecon.2013.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800913000414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2013.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    2. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    3. Annegrete Bruvoll & Karin Ibenholt, 1998. "Green Throughput Taxation: Environmental and Economic Consequences," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(4), pages 387-401, December.
    4. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    5. Glen Peters & Robbie Andrew & James Lennox, 2011. "Constructing An Environmentally-Extended Multi-Regional Input-Output Table Using The Gtap Database," Economic Systems Research, Taylor & Francis Journals, vol. 23(2), pages 131-152.
    6. Morgenstern, Richard D. & Ho, Mun & Shih, J.-S.Jhih-Shyang & Zhang, Xuehua, 2004. "The near-term impacts of carbon mitigation policies on manufacturing industries," Energy Policy, Elsevier, vol. 32(16), pages 1825-1841, November.
    7. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    8. Gilles Le Blanc & Mathieu Bordigoni & Alain Hita, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Post-Print hal-00768525, HAL.
    9. George A. Akerlof, 1970. "The Market for "Lemons": Quality Uncertainty and the Market Mechanism," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(3), pages 488-500.
    10. Melvin, James R, 1979. "Short-Run Price Effects of the Corporate Income Tax and Implications for International Trade," American Economic Review, American Economic Association, vol. 69(5), pages 765-774, December.
    11. Allwood, Julian M. & Ashby, Michael F. & Gutowski, Timothy G. & Worrell, Ernst, 2011. "Material efficiency: A white paper," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 362-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Antosiewicz & Piotr Lewandowski & Jan Witajewski-Baltvilks, 2016. "Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling," Sustainability, MDPI, Open Access Journal, vol. 8(4), pages 1-17, April.
    2. Mohammadi, Mir Ahmad & Sayadi, Ahmad Reza & Khoshfarman, Mahsa & Husseinzadeh Kashan, Ali, 2022. "A systems dynamics simulation model of a steel supply chain-case study," Resources Policy, Elsevier, vol. 77(C).
    3. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    4. Manley, Ross L. & Alonso, Elisa & Nassar, Nedal T., 2022. "A model to assess industry vulnerability to disruptions in mineral commodity supplies," Resources Policy, Elsevier, vol. 78(C).
    5. Cooper, Simone & Skelton, Alexandra C.H. & Owen, Anne & Densley-Tingley, Danielle & Allwood, Julian M., 2016. "A multi-method approach for analysing the potential employment impacts of material efficiency," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 54-66.
    6. Qi, Yajie & Li, Huajiao & Liu, Yanxin & Feng, Sida & Li, Yang & Guo, Sui, 2020. "Granger causality transmission mechanism of steel product prices under multiple scales—The industrial chain perspective," Resources Policy, Elsevier, vol. 67(C).
    7. Muhammad Muhitur Rahman & Mohammad Shahedur Rahman & Saidur R. Chowdhury & Alaeldeen Elhaj & Shaikh Abdur Razzak & Syed Abu Shoaib & Md Kamrul Islam & Mohammed Monirul Islam & Sayeed Rushd & Syed Masi, 2022. "Greenhouse Gas Emissions in the Industrial Processes and Product Use Sector of Saudi Arabia—An Emerging Challenge," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    8. Rootzén, Johan & Johnsson, Filip, 2016. "Paying the full price of steel – Perspectives on the cost of reducing carbon dioxide emissions from the steel industry," Energy Policy, Elsevier, vol. 98(C), pages 459-469.
    9. Glenn A. Aguilar-Hernandez & Carlos Pablo Sigüenza-Sanchez & Franco Donati & João F. D. Rodrigues & Arnold Tukker, 2018. "Assessing circularity interventions: a review of EEIOA-based studies," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Söderholm, Patrik & Tilton, John E., 2012. "Material efficiency: An economic perspective," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 75-82.
    2. Cooper, Simone & Skelton, Alexandra C.H. & Owen, Anne & Densley-Tingley, Danielle & Allwood, Julian M., 2016. "A multi-method approach for analysing the potential employment impacts of material efficiency," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 54-66.
    3. Sato, Masahiro & Kharrazi, Ali & Nakayama, Hirofumi & Kraines, Steven & Yarime, Masaru, 2017. "Quantifying the supplier-portfolio diversity of embodied energy: Strategic implications for strengthening energy resilience," Energy Policy, Elsevier, vol. 105(C), pages 41-52.
    4. Pi-qin Gong & Bao-jun Tang & Yu-chong Xiao & Gao-jie Lin & Jian-yun Liu, 2016. "Research on China export structure adjustment: an embodied carbon perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 129-151, November.
    5. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    6. Christian Haas & Karol Kempa, 2023. "Low-Carbon Investment and Credit Rationing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(1), pages 109-145, October.
    7. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.
    8. Gasim, Anwar A., 2015. "The embodied energy in trade: What role does specialization play?," Energy Policy, Elsevier, vol. 86(C), pages 186-197.
    9. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    10. Bruvoll, Annegrete & Glomsrod, Solveig & Vennemo, Haakon, 1999. "Environmental drag: evidence from Norway," Ecological Economics, Elsevier, vol. 30(2), pages 235-249, August.
    11. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    12. Ron H. Chan & Edward Manderson & Fan Zhang, 2022. "Indirect Energy Costs and Comparative Advantage," Economics Discussion Paper Series 2206, Economics, The University of Manchester.
    13. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    14. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    15. Sommerfeldt, Nelson & Lemoine, Ida & Madani, Hatef, 2022. "Hide and seek: The supply and demand of information for household solar photovoltaic investment," Energy Policy, Elsevier, vol. 161(C).
    16. Mei Liao & Chao Ma & Dongpu Yao & Huizheng Liu, 2013. "Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies," Asia Europe Journal, Springer, vol. 11(3), pages 265-283, September.
    17. Duarte, Rosa & Feng, Kuishuang & Hubacek, Klaus & Sánchez-Chóliz, Julio & Sarasa, Cristina & Sun, Laixiang, 2016. "Modeling the carbon consequences of pro-environmental consumer behavior," Applied Energy, Elsevier, vol. 184(C), pages 1207-1216.
    18. Erin Baker, 2012. "Option Value and the Diffusion of Energy Efficient Products," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    19. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    20. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:89:y:2013:i:c:p:33-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.