IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v68y2009i5p1288-1300.html
   My bibliography  Save this article

A new method for assessing the sustainability of land-use systems (II): Evaluating impact indicators

Author

Listed:
  • Walter, Christof
  • Stützel, Hartmut

Abstract

In the past decade, numerous indicators and indicator sets for sustainable agriculture and sustainable land management have been proposed. In addition to their interest in comparing different management systems on an indicator by indicator basis, land managers are often interested in comparing individual indicators against a threshold, or, in order to study trade-offs, against each other. To this end it is necessary to (1) transform the original indicators into a comparable format, and (2) score these transformed indicators against a sustainability function. This paper introduces an evaluation method for land-use-related impact indicators, which was designed to accomplish these tasks. It is the second of a series of two papers, and as such it links into a larger framework for sustainability assessment of land use systems. The evaluation scheme introduced here comprises (1) a standardisation procedure, which aims at making different indicators comparable. In this procedure indicators are first normalised, by referencing them to the total impact they contribute towards, and then they are corrected by a factor describing the severity of this total impact in terms of exceeding a threshold. The procedure borrows conceptually from Life Cycle Assessment (LCA) Impact Analysis methodology; (2) a valuation procedure, which judges the individual standardised indicators with regard to sustainability. This methodology is then tested on an indicator set for the environmental impact of a spinach production system in Northwest Germany. The method highlights mineral resource consumption, greenhouse gas emission, eutrophication and impacts on soil quality as the most important environmental effects of the studied system. We then explore the effect of introducing weighting factors, reflecting the differing societal perception of diverse environmental issues. Two different sets of weighting factors are used. The influence of weighting is, however, small compared to that of the standardisation procedure introduced earlier. Finally, we explore the propagation of uncertainty (defined as a variable's 95% confidence limits) throughout the standardisation procedure using a stochastic simulation approach. The uncertainty of the analysed standardised indicator was higher than that of the non-standardised indicators by a factor of 2.0 to 2.5.

Suggested Citation

  • Walter, Christof & Stützel, Hartmut, 2009. "A new method for assessing the sustainability of land-use systems (II): Evaluating impact indicators," Ecological Economics, Elsevier, vol. 68(5), pages 1288-1300, March.
  • Handle: RePEc:eee:ecolec:v:68:y:2009:i:5:p:1288-1300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(08)00525-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter, Christof & Stützel, Hartmut, 2009. "A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues," Ecological Economics, Elsevier, vol. 68(5), pages 1275-1287, March.
    2. Jamieson, Dale, 1998. "Sustainability and beyond," Ecological Economics, Elsevier, vol. 24(2-3), pages 183-192, February.
    3. John P. Reganold & Jerry D. Glover & Preston K. Andrews & Herbert R. Hinman, 2001. "Sustainability of three apple production systems," Nature, Nature, vol. 410(6831), pages 926-930, April.
    4. Hansen, J. W., 1996. "Is agricultural sustainability a useful concept?," Agricultural Systems, Elsevier, vol. 50(2), pages 117-143.
    5. Tacconi, Luca, 1998. "Scientific methodology for ecological economics," Ecological Economics, Elsevier, vol. 27(1), pages 91-105, October.
    6. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    7. Izac, A-M. N. & Swift, M. J., 1994. "On agricultural sustainability and its measurement in small-scale farming in sub-Saharan Africa," Ecological Economics, Elsevier, vol. 11(2), pages 105-125, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Didem Dizdaroglu, 2017. "The Role of Indicator-Based Sustainability Assessment in Policy and the Decision-Making Process: A Review and Outlook," Sustainability, MDPI, vol. 9(6), pages 1-28, June.
    2. Qing Huang & Xinqi Zheng & Yecui Hu, 2015. "Analysis of Land-Use Emergy Indicators Based on Urban Metabolism: A Case Study for Beijing," Sustainability, MDPI, vol. 7(6), pages 1-19, June.
    3. Jones, Michael John, 2010. "Accounting for the environment: Towards a theoretical perspective for environmental accounting and reporting," Accounting forum, Elsevier, vol. 34(2), pages 123-138.
    4. Ivonne Acosta-Alba & Hayo M. G. Van der Werf, 2011. "The Use of Reference Values in Indicator-Based Methods for the Environmental Assessment of Agricultural Systems," Sustainability, MDPI, vol. 3(2), pages 1-19, February.
    5. Maria G. Lampridi & Claus G. Sørensen & Dionysis Bochtis, 2019. "Agricultural Sustainability: A Review of Concepts and Methods," Sustainability, MDPI, vol. 11(18), pages 1-27, September.
    6. Lindner, Marcus & Suominen, Tommi & Palosuo, Taru & Garcia-Gonzalo, Jordi & Verweij, Peter & Zudin, Sergey & Päivinen, Risto, 2010. "ToSIA—A tool for sustainability impact assessment of forest-wood-chains," Ecological Modelling, Elsevier, vol. 221(18), pages 2197-2205.
    7. Cisneros, J.M. & Grau, J.B. & Antón, J.M. & de Prada, J.D. & Cantero, A. & Degioanni, A.J., 2011. "Assessing multi-criteria approaches with environmental, economic and social attributes, weights and procedures: A case study in the Pampas, Argentina," Agricultural Water Management, Elsevier, vol. 98(10), pages 1545-1556, August.
    8. Sergiy Smetana & Christine Tamásy & Alexander Mathys & Volker Heinz, 2015. "Sustainability and regions: sustainability assessment in regional perspective," Regional Science Policy & Practice, Wiley Blackwell, vol. 7(4), pages 163-186, November.
    9. Paula Trivino-Tarradas & Manuel R. Gomez-Ariza & Gottlieb Basch & Emilio J. Gonzalez-Sanchez, 2019. "Sustainability Assessment of Annual and Permanent Crops: The Inspia Model," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    10. Öberg, Christina & Huge-Brodin, Maria & Björklund, Maria, 2012. "Applying a network level in environmental impact assessments," Journal of Business Research, Elsevier, vol. 65(2), pages 247-255.
    11. Walter, Christof & Stützel, Hartmut, 2009. "A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues," Ecological Economics, Elsevier, vol. 68(5), pages 1275-1287, March.
    12. Xiaojun Ye & Lingyun Fan & Cheng Lei, 2023. "Intensive-Use-Oriented Performance Evaluation and Optimization of Rural Industrial Land: A Case Study of Wujiang District, China," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    13. Huilong Lin & Yanfei Pu & Xueni Ma & Yue Wang & Charles Nyandwi & Jean de Dieu Nzabonakuze, 2020. "The Environmental Impacts of the Grassland Agricultural System and the Cultivated Land Agricultural System: A Comparative Analysis in Eastern Gansu," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    14. Toufik Aidat & Salah Eddine Benziouche & Leonardo Cei & Elisa Giampietri & Antonio Berti, 2023. "Impact of Agricultural Policies on the Sustainable Greenhouse Development in Biskra Region (Algeria)," Sustainability, MDPI, vol. 15(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter, Christof & Stützel, Hartmut, 2009. "A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues," Ecological Economics, Elsevier, vol. 68(5), pages 1275-1287, March.
    2. Gomez-Limon, Jose Antonio & Riesgo, Laura, 2010. "Sustainability assessment of olive grove in Andalusia: A methodological proposal," 120th Seminar, September 2-4, 2010, Chania, Crete 109323, European Association of Agricultural Economists.
    3. Heller, Martin C. & Keoleian, Gregory A., 2003. "Assessing the sustainability of the US food system: a life cycle perspective," Agricultural Systems, Elsevier, vol. 76(3), pages 1007-1041, June.
    4. Franks, Jeremy & Frater, Poppy, 2013. "Measuring agricultural sustainability at the farm-level: A pragmatic approach," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 2(4), pages 1-19, July.
    5. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    6. Paolo Cupo & Rinalda Alberta Di Cerbo, 2016. "The determinants of ranking in sustainable efficiency of Italian farms," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(2), pages 141-159.
    7. Luong Van Pham & Carl Smith, 2014. "Drivers of agricultural sustainability in developing countries: a review," Environment Systems and Decisions, Springer, vol. 34(2), pages 326-341, June.
    8. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    9. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. van Calker, Klaas Jan & Antink, Rudi H.J. Hooch & Beldman, Alfons C.G. & Mauser, Anniek, 2005. "Caring Dairy: A Sustainable Dairy Farming Initiative in Europe," 15th Congress, Campinas SP, Brazil, August 14-19, 2005 24234, International Farm Management Association.
    11. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Bachev, Hrabrin, 2018. "Управление На Аграрната Устойчивост В България [Governance of agrarian sustainability in Bulgaria]," MPRA Paper 83686, University Library of Munich, Germany.
    13. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    14. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    15. Shamsheer Haq & Ismet Boz, 2020. "Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2545-2567, March.
    16. Tiéfigué Pierrette Coulibaly & Jianguo Du & Daniel Diakité & Olivier Joseph Abban & Elvis Kouakou, 2021. "A Proposed Conceptual Framework on the Adoption of Sustainable Agricultural Practices: The Role of Network Contact Frequency and Institutional Trust," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    17. Bachev, Hrabrin, 2020. "Evaluation of governance sustainability of Bulgarian agriculture," MPRA Paper 103478, University Library of Munich, Germany.
    18. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    19. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    20. Stephens, William & Hess, Tim, 1999. "Systems approaches to water management research," Agricultural Water Management, Elsevier, vol. 40(1), pages 3-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:68:y:2009:i:5:p:1288-1300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.