IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v27y2010i6p1473-1483.html
   My bibliography  Save this article

Bivariate income distributions for assessing inequality and poverty under dependent samples

Author

Listed:
  • Vinh, Andrea
  • Griffiths, William E.
  • Chotikapanich, Duangkamon

Abstract

As indicators of social welfare, the incidence of inequality and poverty is of ongoing concern to policy makers and researchers alike. Of particular interest are the changes in inequality and poverty over time, which are typically assessed through the estimation of income distributions. From this, income inequality and poverty measures, along with their differences and standard errors, can be derived and compared. With panel data becoming more frequently used to make such comparisons, traditional methods which treat income distributions from different years independently and estimate them on a univariate basis, fail to capture the dependence inherent in a sample taken from a panel study. Consequently, parameter estimates are likely to be less efficient, and the standard errors for between-year differences in various inequality and poverty measures will be incorrect. This paper addresses the issue of sample dependence by suggesting a number of bivariate distributions, with Singh-Maddala or Dagum marginals, for a partially dependent sample of household income for two years. Specifically, the distributions considered are the bivariate Singh-Maddala distribution, proposed by Takahasi (1965), and bivariate distributions belonging to the copula class of multivariate distributions, which are an increasingly popular approach to modelling joint distributions. Each bivariate income distribution is estimated via full information maximum likelihood using data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey for 2001 and 2005. Parameter estimates for each bivariate income distribution are used to obtain values for mean income and modal income, the Gini inequality coefficient and the headcount ratio poverty measure, along with their differences, enabling the assessment of changes in such measures over time. In addition, the standard errors of each summary measure and their differences, which are of particular interest in this analysis, are calculated using the delta method.

Suggested Citation

  • Vinh, Andrea & Griffiths, William E. & Chotikapanich, Duangkamon, 2010. "Bivariate income distributions for assessing inequality and poverty under dependent samples," Economic Modelling, Elsevier, vol. 27(6), pages 1473-1483, November.
  • Handle: RePEc:eee:ecmode:v:27:y:2010:i:6:p:1473-1483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264-9993(10)00141-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    2. José Sarabia & Enrique Castillo & Marta Pascual & María Sarabia, 2007. "Bivariate income distributions with lognormal conditionals," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 371-383, December.
    3. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    4. Salem, A B Z & Mount, T D, 1974. "A Convenient Descriptive Model of Income Distribution: The Gamma Density," Econometrica, Econometric Society, vol. 42(6), pages 1115-1127, November.
    5. Kmietowicz, Z W, 1984. "The Bivariate Lognormal Model for the Distribution of Household Size and Income," The Manchester School of Economic & Social Studies, University of Manchester, vol. 52(2), pages 196-210, June.
    6. Kleiber, Christian, 1996. "Dagum vs. Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 53(3), pages 265-268, December.
    7. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    8. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    9. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amponsah, Mary & Agbola, Frank W. & Mahmood, Amir, 2023. "The relationship between poverty, income inequality and inclusive growth in Sub-Saharan Africa," Economic Modelling, Elsevier, vol. 126(C).
    2. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
    3. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    4. Lee, Chien-Chiang & Chang, Chi-Hung & Chen, Mei-Ping, 2015. "Industry co-movements of American depository receipts: Evidences from the copula approaches," Economic Modelling, Elsevier, vol. 46(C), pages 301-314.
    5. David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2021. "Posterior Probabilities for Lorenz and Stochastic Dominance of Australian Income Distributions," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 504-524, December.
    6. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    3. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    4. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    5. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    6. Christophe Muller, 2001. "The Properties of the Watts Poverty Index under Lognormality," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-9.
    7. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.
    8. Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
    9. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    10. Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
    11. Guanghua Wan, 2012. "Towards Greater Equality in China: The Economic Growth Dividend," Working Papers 2012/33, Maastricht School of Management.
    12. Boccanfuso, Dorothée & Richard, Patrick & Savard, Luc, 2013. "Parametric and nonparametric income distribution estimators in CGE micro-simulation modeling," Economic Modelling, Elsevier, vol. 35(C), pages 892-899.
    13. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    14. Fernández-Morales, Antonio, 2016. "Measuring poverty with the Foster, Greer and Thorbecke indexes based on the Gamma distribution," MPRA Paper 69648, University Library of Munich, Germany.
    15. Dietmar Harhoff & Frederic M. Scherer & Katrin Vopel, 1997. "Exploring the Tail of Patented Invention Value Distributions," CIG Working Papers FS IV 97-27, Wissenschaftszentrum Berlin (WZB), Research Unit: Competition and Innovation (CIG).
    16. Samuel Dastrup & Rachel Hartshorn & James McDonald, 2007. "The impact of taxes and transfer payments on the distribution of income: A parametric comparison," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 353-369, December.
    17. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    18. Brzezinski, Michal, 2014. "Empirical modeling of the impact factor distribution," Journal of Informetrics, Elsevier, vol. 8(2), pages 362-368.
    19. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    20. Wan, Guanghua & Hu, Xiaoshan & Liu, Weiqun, 2021. "China's poverty reduction miracle and relative poverty: Focusing on the roles of growth and inequality," China Economic Review, Elsevier, vol. 68(C).

    More about this item

    Keywords

    C23 C46 Copulas Income distributions Inequality Panel data Dependent sample;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:27:y:2010:i:6:p:1473-1483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.