IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i8p2454-2470.html
   My bibliography  Save this article

Root selection in normal mixture models

Author

Listed:
  • Seo, Byungtae
  • Kim, Daeyoung

Abstract

Finite mixtures of normal distributions are attractive in identifying the underlying group structure in the data. However, it is a challenging task to do statistical inference in normal mixture models using the method of maximum likelihood, due to the unbounded likelihood and the existence of multiple roots to the likelihood equation including a so-called spurious root. In this article we propose a new likelihood-based method for selecting a statistically reasonable root when there exist multiple roots of the likelihood equation for a finite normal mixture model. We first prove that our proposed methodology can choose a root to the mixture likelihood equation with consistency. We then show, by simulation studies and real examples, that the proposed methods can greatly reduce the risk of choosing problematic roots that have the same features as spurious roots.

Suggested Citation

  • Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2454-2470
    DOI: 10.1016/j.csda.2012.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200062X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biernacki, Christophe & Chrétien, Stéphane, 2003. "Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 373-382, February.
    2. Dankmar Böhning & Ekkehart Dietz & Rainer Schaub & Peter Schlattmann & Bruce Lindsay, 1994. "The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 373-388, June.
    3. Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
    4. Wilfried Seidel & Hana Ševčíková, 2004. "Types of likelihood maxima in mixture models and their implication on the performance of tests," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(4), pages 631-654, December.
    5. Gabriela Ciuperca & Andrea Ridolfi & Jérôme Idier, 2003. "Penalized Maximum Likelihood Estimator for Normal Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 45-59, March.
    6. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    7. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
    8. Chris Fraley & Adrian E. Raftery, 2007. "Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 155-181, September.
    9. Yao, Weixin & Lindsay, Bruce G., 2009. "Bayesian Mixture Labeling by Highest Posterior Density," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 758-767.
    10. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 3-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
    2. Luis Angel García-Escudero & Alfonso Gordaliza & Francesca Greselin & Salvatore Ingrassia & Agustín Mayo-Iscar, 2018. "Eigenvalues and constraints in mixture modeling: geometric and computational issues," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 203-233, June.
    3. Sangkon Oh & Byungtae Seo, 2023. "Merging Components in Linear Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 25-51, April.
    4. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    5. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    6. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    7. Krzysztof Podgórski & Jonas Wallin, 2015. "Maximizing leave-one-out likelihood for the location parameter of unbounded densities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 19-38, February.
    8. Heather Shappell & Sean L. Simpson, 2022. "Discussion on “Distributional independent component analysis for diverse neuroimaging modalities” by Ben Wu, Subhadip Pal, Jian Kang, and Ying Guo," Biometrics, The International Biometric Society, vol. 78(3), pages 1106-1108, September.
    9. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    10. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    11. Xuwen Zhu & Volodymyr Melnykov, 2015. "Probabilistic assessment of model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 395-422, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    2. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    3. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    4. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    5. Luis Angel García-Escudero & Alfonso Gordaliza & Francesca Greselin & Salvatore Ingrassia & Agustín Mayo-Iscar, 2018. "Eigenvalues and constraints in mixture modeling: geometric and computational issues," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 203-233, June.
    6. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    7. Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
    8. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    9. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    10. Daeyoung Kim & Bruce Lindsay, 2015. "Empirical identifiability in finite mixture models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 745-772, August.
    11. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    12. Chi, Eric C. & Lange, Kenneth, 2014. "Stable estimation of a covariance matrix guided by nuclear norm penalties," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 117-128.
    13. Zhang, Yifan & Fong, Duncan K.H. & DeSarbo, Wayne S., 2021. "A generalized ordinal finite mixture regression model for market segmentation," International Journal of Research in Marketing, Elsevier, vol. 38(4), pages 1055-1072.
    14. Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Model-based Clustering of Count Processes," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 188-211, July.
    15. Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
    16. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire, 2012. "Computational aspects of fitting mixture models via the expectation–maximization algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3843-3864.
    17. Brenton R. Clarke & Thomas Davidson & Robert Hammarstrand, 2017. "A comparison of the $$L_2$$ L 2 minimum distance estimator and the EM-algorithm when fitting $${\varvec{{k}}}$$ k -component univariate normal mixtures," Statistical Papers, Springer, vol. 58(4), pages 1247-1266, December.
    18. Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
    19. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    20. C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2454-2470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.