Advanced Search
MyIDEAS: Login

Testing non-inferiority for clustered matched-pair binary data in diagnostic medicine

Contents:

Author Info

  • Yang, Zhao
  • Sun, Xuezheng
  • Hardin, James W.
Registered author(s):

    Abstract

    Testing non-inferiority in active-controlled clinical trials examines whether a new procedure is, to a pre-specified amount, no worse than an existing procedure. To assess non-inferiority between two procedures using clustered matched-pair binary data, two new statistical tests are systematically compared to existing tests. The calculation of corresponding confidence interval is also proposed. None of the tests considered requires structural within-cluster correlation or distributional assumptions. The results of an extensive Monte Carlo simulation study illustrate that the performance of the statistics depends on several factors including the number of clusters, cluster size, probability of success in the test procedure, the homogeneity of the probability of success across clusters, and the intra-cluster correlation coefficient (ICC). In evaluating non-inferiority for a clustered matched-pair study, one should consider all of these issues when choosing an appropriate test statistic. The ICC-adjusted test statistic is generally recommended to effectively control the nominal level when there is constant or small variability of cluster sizes. For a greater number of clusters, the other test statistics maintain the nominal level reasonably well and have higher power. Therefore, with the carefully designed clustered matched-pair study, a combination of the statistics investigated may serve best in data analysis. Finally, to illustrate the practical application of the recommendations, a real clustered matched-pair collection of data is used to illustrate testing non-inferiority.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002222
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 5 ()
    Pages: 1301-1320

    as in new window
    Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1301-1320

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Clustered matched-pair binary data; Diagnostic testing; Non-inferiority; Intra-cluster correlation coefficient;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Nam, Jun-mo, 2011. "Power and sample size requirements for non-inferiority in studies comparing two matched proportions where the events are correlated," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2880-2887, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1301-1320. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.