IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p408-417.html
   My bibliography  Save this article

A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity

Author

Listed:
  • Stoklosa, Jakub
  • Huggins, Richard M.

Abstract

We extend the conditional likelihood approach to the analysis of capture–recapture experiments for closed populations by nonparametrically modeling the relationship between capture probabilities and individual covariates using P-splines. The model allows nonparametric functions of multivariate continuous covariates as well as categorical covariates and time effects, greatly enhancing the techniques available to an analyst. To implement this approach in practice, we found it necessary to develop a robust modification of the Horvitz–Thompson estimator. The method is illustrated on several data sets and a small simulation study is conducted.

Suggested Citation

  • Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:408-417
    DOI: 10.1016/j.csda.2011.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002891
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rivest Louis-Paul, 2011. "A Lower Bound Model for Multiple Record Systems Estimation with Heterogeneous Catchability," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, May.
    2. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    3. Shirley Pledger, 2000. "Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures," Biometrics, The International Biometric Society, vol. 56(2), pages 434-442, June.
    4. Richard Huggins & Wen‐Han Hwang, 2007. "Non‐parametric estimation of population size from capture–recapture data when the capture probability depends on a covariate," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 429-443, August.
    5. Wen-Han Hwang & Steve Y. H. Huang, 2003. "Estimation in Capture-Recapture Models When Covariates Are Subject to Measurement Errors," Biometrics, The International Biometric Society, vol. 59(4), pages 1113-1122, December.
    6. Yee, Thomas W., 2010. "The VGAM Package for Categorical Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i10).
    7. Zwane, E. N. & van der Heijden, P. G. M., 2004. "Semiparametric models for capture-recapture studies with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 729-743, November.
    8. Young‐Ju Kim & Chong Gu, 2004. "Smoothing spline Gaussian regression: more scalable computation via efficient approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 337-356, May.
    9. Muggeo, Vito M.R. & Ferrara, Giancarlo, 2008. "Fitting generalized linear models with unspecified link function: A P-spline approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2529-2537, January.
    10. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    2. Yee, Thomas W. & Stoklosa, Jakub & Huggins, Richard M., 2015. "The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i05).
    3. Li, Haoqi & Lin, Huazhen & Yip, Paul S.F. & Li, Yuan, 2019. "Estimating population size of heterogeneous populations with large data sets and a large number of parameters," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 34-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    2. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    3. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    4. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    6. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    7. Jiang, Xianfeng & Packer, Frank, 2019. "Credit ratings of Chinese firms by domestic and global agencies: Assessing the determinants and impact," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 178-193.
    8. Xi Liu & Yiqiao Jin & Yifan Yang & Xiaoqing Pan, 2023. "Properties and Estimations of a Multivariate Folded Normal Distribution," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
    9. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    10. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    11. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    12. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    13. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    14. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    15. Michail Tsagris & Christina Beneki & Hossein Hassani, 2014. "On the Folded Normal Distribution," Mathematics, MDPI, vol. 2(1), pages 1-17, February.
    16. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    17. Shuai Shao & Göran Kauermann, 2020. "Understanding price elasticity for airline ancillary services," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 74-82, February.
    18. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    19. Shin Ji-Hyung & McNeney Brad & Graham Jinko & Infante-Rivard Claire, 2014. "A data-smoothing approach to explore and test gene-environment interaction in case-parent trios," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 159-171, April.
    20. Fatima Palacios‐Rodriguez & Elena Di Bernardino & Melina Mailhot, 2023. "Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:408-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.