Advanced Search
MyIDEAS: Login

Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends

Contents:

Author Info

  • Krieg, Sabine
  • van den Brakel, Jan A.
Registered author(s):

    Abstract

    National statistical institutes generally apply design-based techniques like the generalized regression estimator to compile official statistics. These techniques, however, have relatively large design variances in the case of small sample sizes. In such cases, model based small area estimation techniques can be considered to improve the precision of the estimates. A multivariate structural time series model is developed and applied to obtain more precise estimates of the Dutch monthly unemployment rate for six domains. The model takes advantage of sample information from preceding time periods through an appropriate time series model and from other domains by modelling the correlation between the trend components of the time series models for the different domains. The trends of the six domains are cointegrated, which allows the use of a more parsimonious common factor model that is based on three common trends. Although the use of common factor models is a well known approach in econometrics, its application in the context of small area estimation is novel. The standard errors of the direct estimates of the monthly unemployment rates are more than halved with this approach.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000783
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 10 ()
    Pages: 2918-2933

    as in new window
    Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2918-2933

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Cointegration; Common factor models; Kalman filter; Small area estimation; State-space models;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2918-2933. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.