Advanced Search
MyIDEAS: Login to save this article or follow this journal

Penalized cluster analysis with applications to family data

Contents:

Author Info

  • Fang, Yixin
  • Wang, Junhui
Registered author(s):

    Abstract

    The goal of cluster analysis is to assign observations into clusters so that observations in the same cluster are similar in some sense. Many clustering methods have been developed in the statistical literature, but these methods are inappropriate for clustering family data, which possess intrinsic familial structure. To incorporate the familial structure, we propose a form of penalized cluster analysis with a tuning parameter controlling the tradeoff between the observation dissimilarity and the familial structure. The tuning parameter is selected based on the concept of clustering stability. The effectiveness of the method is illustrated via simulations and an application to a family study of asthma.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-51Y57G3-3/2/278371de949fb135accc1d70d8091a33
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 55 (2011)
    Issue (Month): 6 (June)
    Pages: 2128-2136

    as in new window
    Handle: RePEc:eee:csdana:v:55:y:2011:i:6:p:2128-2136

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Consistency Cross-validation Kinship K-means Stability;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    2. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer, vol. 32(3), pages 241-254, September.
    3. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:6:p:2128-2136. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.