Advanced Search
MyIDEAS: Login to save this article or follow this journal

A computational strategy for doubly smoothed MLE exemplified in the normal mixture model


Author Info

  • Seo, Byungtae
  • Lindsay, Bruce G.
Registered author(s):


    A typical problem for the parameter estimation in normal mixture models is an unbounded likelihood and the presence of many spurious local maxima. To resolve this problem, we apply the doubly smoothed maximum likelihood estimator (DS-MLE) proposed by Seo and Lindsay (in preparation). We discuss the computational issues of the DS-MLE and propose a simulation-based DS-MLE using Monte Carlo methods as a general computational tool. Simulation results show that the DS-MLE is virtually consistent for any bandwidth choice. Moreover, the parameter estimates in the DS-MLE are quite robust to the choice of bandwidths, as the theory indicates. A new method for the bandwidth selection is also proposed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 54 (2010)
    Issue (Month): 8 (August)
    Pages: 1930-1941

    as in new window
    Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1930-1941

    Contact details of provider:
    Web page:

    Related research

    Keywords: DS-MLE Normal mixture Kernel smoothing Monte Carlo Bandwidth selection Spectral degrees of freedom;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    2. Gabriela Ciuperca & Andrea Ridolfi & Jérome Idier, 2003. "Penalized Maximum Likelihood Estimator for Normal Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 45-59.
    3. Marin, Jean-Michel & Mengersen, Kerrie & Robert, Christian P., 2005. "Bayesian Modelling and Inference on Mixtures of Distributions," Economics Papers from University Paris Dauphine 123456789/6069, Paris Dauphine University.
    4. D. Böhning, 1986. "A vertex-exchange-method in D-optimal design theory," Metrika, Springer, vol. 33(1), pages 337-347, December.
    5. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    6. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    2. Hampel, Frank & Hennig, Christian & Ronchetti, Elvezio, 2011. "A smoothing principle for the Huber and other location M-estimators," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 324-337, January.
    3. Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.
    4. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1930-1941. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.