Advanced Search
MyIDEAS: Login

Asymmetric multivariate normal mixture GARCH

Contents:

Author Info

  • Haas, Markus
  • Mittnik, Stefan
  • Paolella, Marc S.

Abstract

An asymmetric multivariate generalization of the recently proposed class of normal mixture GARCH models is developed. Issues of parametrization and estimation are discussed. Conditions for covariance stationarity and the existence of the fourth moment are derived, and expressions for the dynamic correlation structure of the process are provided. In an application to stock market returns, it is shown that the disaggregation of the conditional (co)variance process generated by the model provides substantial intuition. Moreover, the model exhibits a strong performance in calculating out-of-sample Value-at-Risk measures.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8V-4RJ9X28-1/2/2cd6913b74acbc235cb4d31014c4030f
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 53 (2009)
Issue (Month): 6 (April)
Pages: 2129-2154

as in new window
Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2129-2154

Contact details of provider:
Web page: http://www.elsevier.com/locate/csda

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
  3. Broto, Carmen & Ruiz, Esther, 2006. "Unobserved component models with asymmetric conditional variances," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2146-2166, May.
  4. BAUWENS, Luc & ROMBOUTS, Jeroen V.K., 2005. "Bayesian inference for the mixed conditional heteroskedasticity model," CORE Discussion Papers 2005085, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-60, July.
  6. DUFOUR, Jean-Marie, 2005. "Monte Carlo Tests with Nuisance Parameters: A General Approach to Finite-Sample Inference and Nonstandard Asymptotics," Cahiers de recherche 2005-03, Universite de Montreal, Departement de sciences economiques.
  7. Andrew J. Patton, 2002. "On the out-of-sample importance of skewness and asymetric dependence for asset allocation," LSE Research Online Documents on Economics 24951, London School of Economics and Political Science, LSE Library.
  8. Haas, Markus & Mittnik, Stefan & Mizrach, Bruce, 2005. "Assessing central bank credibility during the EMS crises: Comparing option and spot market-based forecasts," CFS Working Paper Series 2005/09, Center for Financial Studies (CFS).
  9. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
  10. Sheppard, Kevin & Cappiello, Lorenzo & Engle, Robert F., 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 0204, European Central Bank.
  11. Sentana,E., 1995. "Quadratic Arch Models," Papers 9517, Centro de Estudios Monetarios Y Financieros-.
  12. Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
  13. BAUWENS, Luc & STORTI, Giuseppe, 2007. "A component GARCH model with time varying weights," CORE Discussion Papers 2007019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  14. Jose A. Lopez, 1997. "Regulatory evaluation of value-at-risk models," Staff Reports 33, Federal Reserve Bank of New York.
  15. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
  16. Christian M. Hafner, 2003. "Fourth Moment Structure of Multivariate GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 26-54.
  17. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  18. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  19. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
  20. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-86, January.
  21. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  22. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2002. "Mixed normal conditional heteroskedasticity," CFS Working Paper Series 2002/10, Center for Financial Studies (CFS).
  23. Pietro BALESTRA & Alberto HOLLY, 1990. "A General Kronecker Formula for the Moments of the Multivariate Normal Distribution," Cahiers de Recherches Economiques du Département d'Econométrie et d'Economie politique (DEEP) 9002, Université de Lausanne, Faculté des HEC, DEEP.
  24. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  25. BAUWENS, Luc & HAFNER, Christian M. & ROMBOUTS, Jeroen VK, . "Multivariate mixed normal conditional heteroskedasticity," CORE Discussion Papers RP -1906, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  26. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
  27. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  28. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
  29. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
  30. Haas Markus, 2007. "Volatility Components and Long Memory-Effects Revisited," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(2), pages 1-39, May.
  31. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2006. "Multivariate normal mixture GARCH," CFS Working Paper Series 2006/09, Center for Financial Studies (CFS).
  32. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix: Some properties and applications," Open Access publications from Tilburg University urn:nbn:nl:ui:12-153207, Tilburg University.
  33. Wu, C.C. & Lee, Jack C., 2007. "Estimation of a utility-based asset pricing model using normal mixture GARCH(1,1)," Economic Modelling, Elsevier, vol. 24(2), pages 329-349, March.
  34. Carol Alexandra & Emese Lazar, 2005. "Asymmetries and Volatility Regimes in the European Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2005-14, Henley Business School, Reading University.
  35. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  36. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-79, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Krishnakumar, Jaya & Kabili, Andi & Roko, Ilir, 2012. "Estimation of SEM with GARCH errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3153-3181.
  2. Boudt, Kris & Croux, Christophe, 2010. "Robust M-estimation of multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2459-2469, November.
  3. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
  4. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
  5. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
  6. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
  7. Simon A. BRODA & Markus HAAS & Jochen KRAUSE & Marc S. PAOLELLA & Sven C. STEUDE, . "Stable Mixture GARCH Models," Swiss Finance Institute Research Paper Series 11-39, Swiss Finance Institute.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2129-2154. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.