IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i3p801-811.html
   My bibliography  Save this article

Standard errors for bagged and random forest estimators

Author

Listed:
  • Sexton, Joseph
  • Laake, Petter

Abstract

Bagging and random forests are widely used ensemble methods. Each forms an ensemble of models by randomly perturbing the fitting of a base learner. The standard errors estimation of the resultant regression function is considered. Three estimators are discussed. One, based on the jackknife, is applicable to bagged estimators and can be computed using the bagged ensemble. The two other estimators target the bootstrap standard error estimator, and require fitting multiple ensemble estimators, one for each bootstrap sample. It is shown that these bootstrap ensemble sizes can be small, which reduces the computation involved in forming the estimator. The estimators are studied using both simulated and real data.

Suggested Citation

  • Sexton, Joseph & Laake, Petter, 2009. "Standard errors for bagged and random forest estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 801-811, January.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:3:p:801-811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00398-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    2. Guihua Wang & Jun Li & Wallace J. Hopp, 2022. "An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies," Management Science, INFORMS, vol. 68(5), pages 3399-3418, May.
    3. Costanza Naguib, 2023. "Is the Impact of Opening the Borders Heterogeneous?," Diskussionsschriften dp2312, Universitaet Bern, Departement Volkswirtschaft.
    4. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    5. Kugler, Philipp & Biewen, Martin, 2020. "Two-Stage Least Squares Random Forests with a Replication of Angrist and Evans (1998)," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224538, Verein für Socialpolitik / German Economic Association.
    6. Andreas Gulyas & Krzysztof Pytka, 2019. "Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach," CRC TR 224 Discussion Paper Series crctr224_2019_131, University of Bonn and University of Mannheim, Germany.
    7. Federico Zincenko, 2023. "Nonparametric estimation of conditional densities by generalized random forests," Papers 2309.13251, arXiv.org, revised Jan 2024.
    8. Christian Stetter & Philipp Mennig & Johannes Sauer, 2022. "Using Machine Learning to Identify Heterogeneous Impacts of Agri-Environment Schemes in the EU: A Case Study [The impact of agri-environmental schemes on farm performance in five EU member States: ," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(4), pages 723-759.
    9. Melissa Newham & Marica Valente, 2022. "The Cost of Influence: How Gifts to Physicians Shape Prescriptions and Drug Costs," Papers 2203.01778, arXiv.org, revised Apr 2023.
    10. Lai Xinglin, 2021. "Modelling hetegeneous treatment effects by quantitle local polynomial decision tree and forest," Papers 2111.15320, arXiv.org, revised Mar 2022.
    11. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    12. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    13. Yiqi Liu & Yuan Qi, 2023. "Using Forests in Multivariate Regression Discontinuity Designs," Papers 2303.11721, arXiv.org.
    14. Gweon, Hyukjun & Li, Shu, 2021. "Batch mode active learning framework and its application on valuing large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 105-115.
    15. Biewen, Martin & Kugler, Philipp, 2021. "Two-stage least squares random forests with an application to Angrist and Evans (1998)," Economics Letters, Elsevier, vol. 204(C).
    16. Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goldstein Benjamin A & Polley Eric C & Briggs Farren B. S., 2011. "Random Forests for Genetic Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-34, July.
    2. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    3. Jerinsh Jeyapaulraj & Dhruv Desai & Peter Chu & Dhagash Mehta & Stefano Pasquali & Philip Sommer, 2022. "Supervised similarity learning for corporate bonds using Random Forest proximities," Papers 2207.04368, arXiv.org, revised Oct 2022.
    4. Joshua Rosaler & Dhruv Desai & Bhaskarjit Sarmah & Dimitrios Vamvourellis & Deran Onay & Dhagash Mehta & Stefano Pasquali, 2023. "Towards Enhanced Local Explainability of Random Forests: a Proximity-Based Approach," Papers 2310.12428, arXiv.org.
    5. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    6. Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    7. Yi Fu & Shuai Cao & Tao Pang, 2020. "A Sustainable Quantitative Stock Selection Strategy Based on Dynamic Factor Adjustment," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    8. Ishwaran, Hemant & Kogalur, Udaya B., 2010. "Consistency of random survival forests," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1056-1064, July.
    9. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    10. Biau, Gérard & Devroye, Luc, 2010. "On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2499-2518, November.
    11. Olivier BIAU & Angela D´ELIA, 2010. "Euro Area GDP Forecast Using Large Survey Dataset - A Random Forest Approach," EcoMod2010 259600029, EcoMod.
    12. Cleridy E. Lennert‐Cody & Richard A. Berk, 2007. "Statistical learning procedures for monitoring regulatory compliance: an application to fisheries data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(3), pages 671-689, July.
    13. Ruoqing Zhu & Donglin Zeng & Michael R. Kosorok, 2015. "Reinforcement Learning Trees," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1770-1784, December.
    14. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    15. Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
    16. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    17. Dhruv Desai & Ashmita Dhiman & Tushar Sharma & Deepika Sharma & Dhagash Mehta & Stefano Pasquali, 2023. "Quantifying Outlierness of Funds from their Categories using Supervised Similarity," Papers 2308.06882, arXiv.org.
    18. Hoora Moradian & Denis Larocque & François Bellavance, 2017. "$$L_1$$ L 1 splitting rules in survival forests," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 671-691, October.
    19. Arlen Dean & Amirhossein Meisami & Henry Lam & Mark P. Van Oyen & Christopher Stromblad & Nick Kastango, 2022. "Quantile regression forests for individualized surgery scheduling," Health Care Management Science, Springer, vol. 25(4), pages 682-709, December.
    20. Prasad, Ramendra & Ali, Mumtaz & Kwan, Paul & Khan, Huma, 2019. "Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation," Applied Energy, Elsevier, vol. 236(C), pages 778-792.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:3:p:801-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.