Advanced Search
MyIDEAS: Login

GeD spline estimation of multivariate Archimedean copulas

Contents:

Author Info

  • Dimitrova, Dimitrina S.
  • Kaishev, Vladimir K.
  • Penev, Spiridon I.

Abstract

A new multivariate Archimedean copula estimation method is proposed in a non-parametric setting. The method uses the so-called Geometrically Designed splines (GeD splines) to represent the cdf of a random variable W[theta], obtained through the probability integral transform of an Archimedean copula with parameter [theta]. Sufficient conditions for the GeD spline estimator to possess the properties of the underlying theoretical cdf, K([theta],t), of W[theta], are given. The latter conditions allow for defining a three-step estimation procedure for solving the resulting non-linear regression problem with linear inequality constraints. In the proposed procedure, finding the number and location of the knots and the coefficients of the unconstrained GeD spline estimator and solving the constraint least-squares optimisation problem are separated. Thus, the resulting spline estimator is used to recover the generator and the related Archimedean copula by solving an ordinary differential equation. The proposed method is truly multivariate, it brings about numerical efficiency and as a result can be applied with large volumes of data and for dimensions d>=2, as illustrated by the numerical examples presented.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8V-4R715KS-1/1/d77733c2513854b8a7c66bd8162901aa
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 52 (2008)
Issue (Month): 7 (March)
Pages: 3570-3582

as in new window
Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3570-3582

Contact details of provider:
Web page: http://www.elsevier.com/locate/csda

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(03), pages 535-562, June.
  2. Peter Hall & Natalie Neumeyer, 2006. "Estimating a bivariate density when there are extra data on one or both components," Biometrika, Biometrika Trust, vol. 93(2), pages 439-450, June.
  3. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
  4. Christian Genest & Jean-François Quessy & Bruno Rémillard, 2006. "Goodness-of-fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 33(2), pages 337-366.
  5. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
  6. Lambert, Philippe, 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6307-6320, August.
  7. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Elena Di Bernardino & Didier Rullière, 2014. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Working Papers hal-00992707, HAL.
  2. Diks, C.G.H. & Dijk, D. van & Panchenko, V., 2008. "Out-of-sample comparison of copula specifications in multivariate density forecasts," CeNDEF Working Papers 08-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  3. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 20(2), pages 223-256, August.
  4. Elena Di Bernardino & Didier Rullière, 2014. "Estimation of multivariate critical layers: Applications to rainfall data," Working Papers hal-00940089, HAL.
  5. Hernández-Lobato, José Miguel & Suárez, Alberto, 2011. "Semiparametric bivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2038-2058, June.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3570-3582. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.