Advanced Search
MyIDEAS: Login to save this article or follow this journal

Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution

Contents:

Author Info

  • Komárek, Arnost
  • Lesaffre, Emmanuel
Registered author(s):

    Abstract

    Generalized linear mixed models are popular for regressing a discrete response when there is clustering, e.g. in longitudinal studies or in hierarchical data structures. It is standard to assume that the random effects have a normal distribution. Recently, it has been examined whether wrongly assuming a normal distribution for the random effects is important for the estimation of the fixed effects parameters. While it has been shown that misspecifying the distribution of the random effects has a minor effect in the context of linear mixed models, the conclusion for generalized mixed models is less clear. Some studies report a minor impact, while others report that the assumption of normality really matters especially when the variance of the random effect is relatively high. Since it is unclear whether the normality assumption is truly satisfied in practice, it is important that generalized mixed models are available which relax the normality assumption. A replacement of the normal distribution with a mixture of Gaussian distributions specified on a grid whereby only the weights of the mixture components are estimated using a penalized approach ensuring a smooth distribution for the random effects is proposed. The parameters of the model are estimated in a Bayesian context using MCMC techniques. The usefulness of the approach is illustrated on two longitudinal studies using R-functions.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-4R5DYV8-2/1/ad363b28a082e2bb44ceb0eddd8ea073
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 52 (2008)
    Issue (Month): 7 (March)
    Pages: 3441-3458

    as in new window
    Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3441-3458

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    2. Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
    3. Caffo, Brian & An, Ming-Wen & Rohde, Charles, 2007. "Flexible random intercept models for binary outcomes using mixtures of normals," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5220-5235, July.
    4. Agresti, Alan & Caffo, Brian & Ohman-Strickland, Pamela, 2004. "Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 639-653, October.
    5. Jara, Alejandro & Jose Garcia-Zattera, Maria & Lesaffre, Emmanuel, 2007. "A Dirichlet process mixture model for the analysis of correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5402-5415, July.
    6. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Broström, Göran & Holmberg, Henrik, 2011. "Generalized linear models with clustered data: Fixed and random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3123-3134, December.
    2. Jaspers, Stijn & Aerts, Marc & Verbeke, Geert & Beloeil, Pierre-Alexandre, 2014. "A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 30-42.
    3. Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
    4. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    5. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3441-3458. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.