Advanced Search
MyIDEAS: Login

Variable selection in regression models using nonstandard optimisation of information criteria

Contents:

Author Info

  • Kapetanios, George
Registered author(s):

    Abstract

    No abstract is available for this item.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-4NH7DWT-1/2/a6b2bd7137f3d711a564a9f69bad70f1
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 52 (2007)
    Issue (Month): 1 (September)
    Pages: 4-15

    as in new window
    Handle: RePEc:eee:csdana:v:52:y:2007:i:1:p:4-15

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    2. Chao, John C. & Phillips, Peter C. B., 1999. "Model selection in partially nonstationary vector autoregressive processes with reduced rank structure," Journal of Econometrics, Elsevier, vol. 91(2), pages 227-271, August.
    3. Kevin Hoover & Stephen J. Perez, 2003. "Data Mining Reconsidered: Encompassing And The General-To-Specific Approach To Specification Search," Working Papers 9727, University of California, Davis, Department of Economics.
    4. Jonathan H. Wright, 2003. "Forecasting U.S. inflation by Bayesian Model Averaging," International Finance Discussion Papers 780, Board of Governors of the Federal Reserve System (U.S.).
    5. Hofmann, Marc & Gatu, Cristian & Kontoghiorghes, Erricos John, 2007. "Efficient algorithms for computing the best subset regression models for large-scale problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 16-29, September.
    6. David Hendry & Hans-Martin Krolzig, 2000. "Computer Automation of General-to-Specific Model Selection Procedures," Economics Series Working Papers 3, University of Oxford, Department of Economics.
    7. Marcellino, Massimiliano & Stock, James H & Watson, Mark W, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
    8. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    9. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    10. Ralf BRUEGGEMANN & Hans-Martin KROLZIG & Helmut LUETKEPOHL, 2002. "Comparison of Model Reduction Methods for VAR Processes," Economics Working Papers ECO2002/19, European University Institute.
    11. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    12. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    13. Ho, Mun S & Sorensen, Bent E, 1996. "Finding Cointegration Rank in High Dimensional Systems Using the Johansen Test: An Illustration Using Data Based Monte Carlo Simulations," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 726-32, November.
    14. Winker, Peter, 1995. "Identification of multivariate AR-models by threshold accepting," Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 295-307, September.
    15. Ostermark, Ralf, 1999. "Solving Irregular Econometric and Mathematical Optimization Problems with a Genetic Hybrid Algorithm," Computational Economics, Society for Computational Economics, vol. 13(2), pages 103-15, April.
    16. Gatu, Cristian & Kontoghiorghes, Erricos J., 2006. "Estimating all possible SUR models with permuted exogenous data matrices derived from a VAR process," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 721-739, May.
    17. Marimon, Ramon & McGrattan, Ellen & Sargent, Thomas J., 1990. "Money as a medium of exchange in an economy with artificially intelligent agents," Journal of Economic Dynamics and Control, Elsevier, vol. 14(2), pages 329-373, May.
    18. George Kapetanios, 2002. "Modelling Core Inflation for the UK Using a New Dynamic Factor Estimation Method and a Large Disaggregated Price Index Dataset," Working Papers 471, Queen Mary, University of London, School of Economics and Finance.
    19. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    20. Kapetanios, George, 2004. "A note on modelling core inflation for the UK using a new dynamic factor estimation method and a large disaggregated price index dataset," Economics Letters, Elsevier, vol. 85(1), pages 63-69, October.
    21. George Kapetanios, 2005. "Variable Selection using Non-Standard Optimisation of Information Criteria," Working Papers 533, Queen Mary, University of London, School of Economics and Finance.
    22. Cadima, Jorge & Cerdeira, J. Orestes & Minhoto, Manuel, 2004. "Computational aspects of algorithms for variable selection in the context of principal components," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 225-236, September.
    23. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    24. Aznar, Antonio & Salvador, Manuel, 2002. "Selecting The Rank Of The Cointegration Space And The Form Of The Intercept Using An Information Criterion," Econometric Theory, Cambridge University Press, vol. 18(04), pages 926-947, August.
    25. Hans-Martin Krolzig, 2000. "Computer Automation of General-to-Specific Model Selection Procedures," Econometric Society World Congress 2000 Contributed Papers 0411, Econometric Society.
    26. Hendry, David F., 1997. "On congruent econometric relations : A comment," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 163-190, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Gilli, Manfred & Winker, Peter, 2007. "2nd Special Issue on Applications of Optimization Heuristics to Estimation and Modelling Problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 2-3, September.
    2. Andreas Sachs & Frauke Schleer, 2013. "Labour market performance in OECD countries: A comprehensive empirical modelling approach of institutional interdependencies," WWWforEurope Working Papers series 7, WWWforEurope.
    3. Ivan Savin, 2010. "A comparative study of the Lasso-type and heuristic model selection methods," Working Papers 042, COMISEF.
    4. Manfred Gilli & Peter Winker, 2008. "Review of Heuristic Optimization Methods in Econometrics," Working Papers 001, COMISEF.
    5. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    6. Ivan Savin & Peter Winker, 2010. "Heuristic Optimization Methods for Dynamic Panel Data Model Selection. Application on the Russian Innovative Performance," Working Papers 027, COMISEF.
    7. Ouysse, Rachida & Kohn, Robert, 2010. "Bayesian variable selection and model averaging in the arbitrage pricing theory model," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3249-3268, December.
    8. Reynès, Christelle & Sabatier, Robert & Molinari, Nicolas & Lehmann, Sylvain, 2008. "A new genetic algorithm in proteomics: Feature selection for SELDI-TOF data," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4380-4394, May.
    9. Yang, Guijun & Wang, Zhigang & Deng, Wei, 2010. "Unbiased generalized quasi-regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 779-789, March.
    10. Johnson, Lorne D. & Sakoulis, Georgios, 2008. "Maximizing equity market sector predictability in a Bayesian time-varying parameter model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3083-3106, February.
    11. Fouskakis, D., 2012. "Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods," European Journal of Operational Research, Elsevier, vol. 220(2), pages 414-422.
    12. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    13. Paroli, Roberta & Spezia, Luigi, 2008. "Bayesian inference in non-homogeneous Markov mixtures of periodic autoregressions with state-dependent exogenous variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2311-2330, January.
    14. Pendharkar, Parag C., 2008. "Maximum entropy and least square error minimizing procedures for estimating missing conditional probabilities in Bayesian networks," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3583-3602, March.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:1:p:4-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.