IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v39y2002i4p435-451.html
   My bibliography  Save this article

Empirical Bayes approach to block wavelet function estimation

Author

Listed:
  • Abramovich, Felix
  • Besbeas, Panagiotis
  • Sapatinas, Theofanis

Abstract

No abstract is available for this item.

Suggested Citation

  • Abramovich, Felix & Besbeas, Panagiotis & Sapatinas, Theofanis, 2002. "Empirical Bayes approach to block wavelet function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 435-451, June.
  • Handle: RePEc:eee:csdana:v:39:y:2002:i:4:p:435-451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(01)00085-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brani Vidakovic, 1999. "Linear Versus Nonlinear Rules for Mixture Normal Priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 111-124, March.
    2. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    3. Merlise Clyde & Edward I. George, 2000. "Flexible empirical Bayes estimation for wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 681-698.
    4. M. Vannucci & F. Corradi, 1999. "Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 971-986.
    5. F. Abramovich & T. Sapatinas & B. W. Silverman, 1998. "Wavelet thresholding via a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 725-749.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    2. Abdallah Abu Abdallah & Mousa Mohammad Abdullah Saleh & Sadam Al-Wadi & Firas Al Rawashdeh, 2019. "Improving the Estimation Accuracy Based on Wavelet Transform," Journal of Social Sciences (COES&RJ-JSS), , vol. 8(4), pages 544-557, October.
    3. Fryzlewicz, Piotr, 2007. "Bivariate hard thresholding in wavelet function estimation," LSE Research Online Documents on Economics 25219, London School of Economics and Political Science, LSE Library.
    4. Serban, Nicoleta, 2010. "Noise reduction for enhanced component identification in multi-dimensional biomolecular NMR studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1051-1065, April.
    5. Vincent Rivoirard, 2004. "Thresholding procedure with priors based on Pareto distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 213-246, June.
    6. Reményi, Norbert & Vidakovic, Brani, 2013. "Λ-neighborhood wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 404-416.
    7. Sam Efromovich, 2004. "Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 205-223, June.
    8. Wang, Xue & Walker, Stephen G., 2010. "A penalised data-driven block shrinkage approach to empirical Bayes wavelet estimation," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 990-996, June.
    9. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Huerta, 2005. "Multivariate Bayes Wavelet shrinkage and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(5), pages 529-542.
    2. Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.
    3. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    4. Reményi, Norbert & Vidakovic, Brani, 2013. "Λ-neighborhood wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 404-416.
    5. Marco Di Zio & Arnoldo Frigessi, 1999. "Smoothness in Bayesian Non-parametric Regression with Wavelets," Methodology and Computing in Applied Probability, Springer, vol. 1(4), pages 391-405, December.
    6. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    7. Mamadou-Diéne Diop & Jules Sadefo Kamdem, 2023. "Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 1-40, March.
    8. repec:dau:papers:123456789/13437 is not listed on IDEAS
    9. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    10. A. Antoniadis, 1997. "Rejoinder," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 143-144, August.
    11. Vidakovic, Brani, 2004. "Transforms in Statistics," Papers 2004,26, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    12. Canhong Wen & Xueqin Wang & Shaoli Wang, 2015. "Laplace Error Penalty-based Variable Selection in High Dimension," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 685-700, September.
    13. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    14. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    15. A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
    16. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    17. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.
    18. Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
    19. Mak Kaboudan, 2006. "Computational Forecasting of Wavelet-converted Monthly Sunspot Numbers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(9), pages 925-941.
    20. Hee-Seok Oh & Donghoh Kim & Youngjo Lee, 2009. "Cross-validated wavelet shrinkage," Computational Statistics, Springer, vol. 24(3), pages 497-512, August.
    21. Jaesik Jeong & Marina Vannucci & Kyungduk Ko, 2013. "A Wavelet-Based Bayesian Approach to Regression Models with Long Memory Errors and Its Application to fMRI Data," Biometrics, The International Biometric Society, vol. 69(1), pages 184-196, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:39:y:2002:i:4:p:435-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.