IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v34y2000i4p415-426.html
   My bibliography  Save this article

High-dimensional computation of the deepest location

Author

Listed:
  • Struyf, Anja
  • Rousseeuw, Peter J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Struyf, Anja & Rousseeuw, Peter J., 2000. "High-dimensional computation of the deepest location," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 415-426, October.
  • Handle: RePEc:eee:csdana:v:34:y:2000:i:4:p:415-426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(99)00112-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
    2. Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
    3. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    2. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    3. Masse, Jean-Claude & Plante, Jean-Francois, 2003. "A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 1-26, February.
    4. Ryan Cumings-Menon, 2022. "Differentially Private Estimation via Statistical Depth," Papers 2207.12602, arXiv.org.
    5. Marti J. Anderson, 2006. "Distance-Based Tests for Homogeneity of Multivariate Dispersions," Biometrics, The International Biometric Society, vol. 62(1), pages 245-253, March.
    6. Fan Chen & Guy Nason, 2020. "A new method for computing the projection median, its influence curve and techniques for the production of projected quantile plots," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-22, May.
    7. Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
    8. Rand Wilcox, 2004. "Inferences Based on a Skipped Correlation Coefficient," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(2), pages 131-143.
    9. Olusoji, Oluwafemi D. & Spaak, Jurg W. & Holmes, Mark & Neyens, Thomas & Aerts, Marc & De Laender, Frederik, 2021. "cyanoFilter: An R package to identify phytoplankton populations from flow cytometry data using cell pigmentation and granularity," Ecological Modelling, Elsevier, vol. 460(C).
    10. Wilcox, Rand R., 2003. "Inferences based on multiple skipped correlations," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 223-236, October.
    11. Chanont Banternghansa & Michael W. McCracken, 2009. "Forecast disagreement among FOMC members," Working Papers 2009-059, Federal Reserve Bank of St. Louis.
    12. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Biman & Chaudhuri, Probal, 1999. "A note on the robustness of multivariate medians," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 269-276, November.
    2. Małgorzata Kobylińska, 2018. "Concept of Observation Depth Measure in the Statistical Analysis of E-Commerce Data in Enterprises," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 49, pages 515-526.
    3. Zuo, Yijun & Serfling, Robert, 2000. "Nonparametric Notions of Multivariate "Scatter Measure" and "More Scattered" Based on Statistical Depth Functions," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 62-78, October.
    4. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    5. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    6. Cascos Fernández, Ignacio & Ochoa Arellano, Maicol Jesús, 2019. "Multivariate expectile trimming and the BExPlot," DES - Working Papers. Statistics and Econometrics. WS 28434, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    8. Nolan, D., 1999. "On min-max majority and deepest points," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 325-333, July.
    9. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    10. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    11. Ochoa Arellano, Maicol Jesús & Cascos Fernández, Ignacio, 2022. "Data depth and multiple output regression, the distorted M-quantiles approach," DES - Working Papers. Statistics and Econometrics. WS 35465, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
    13. Małgorzata Kobylińska, 2021. "Spatial Diversity of Organic Farming in Poland," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    14. Masse, Jean-Claude & Plante, Jean-Francois, 2003. "A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 1-26, February.
    15. López Pintado, Sara & Romo, Juan, 2005. "Depth-based classification for functional data," DES - Working Papers. Statistics and Econometrics. WS ws055611, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Abellanas, Manuel & Claverol, Merce & Hurtado, Ferran, 2007. "Point set stratification and Delaunay depth," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2513-2530, February.
    17. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    18. Romanazzi, Mario, 2001. "Influence Function of Halfspace Depth," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 138-161, April.
    19. Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
    20. Zani, Sergio & Riani, Marco & Corbellini, Aldo, 1998. "Robust bivariate boxplots and multiple outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 28(3), pages 257-270, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:34:y:2000:i:4:p:415-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.