IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p2067-2073.html
   My bibliography  Save this article

Investigating long-range correlation properties in EEG during complex cognitive tasks

Author

Listed:
  • Karkare, Siddharth
  • Saha, Goutam
  • Bhattacharya, Joydeep

Abstract

Previous work shows the presence of scale invariance and long-range correlations in ongoing and spontaneous activity of large scale brain responses (i.e. EEG), and such scaling behavior can also be modulated by simple sensory stimulus. However, little is known whether such alteration but not destruction in scaling properties also occurs during complex cognitive processing and if neuroplasticity plays any role in mediating such changes. In this study, we addressed these issues by investigating scaling properties of multivariate EEG signals obtained from two broad groups – artists and non-artists – while they performed complex tasks of perception and mental imagery of visual art objects. We found that brain regions showing increased correlation properties from rest were similar for both tasks, suggesting that brain networks responsible for visual perception are reactivated for mental imagery. Further, we observed that the two groups could be differentiated by scaling exponents and an artificial neural network based classifier achieved a classification efficiency of over 80%. These results altogether suggest that specific complex cognitive task demands and task-specific expertise can modify the temporal scale-free dynamics of brain responses.

Suggested Citation

  • Karkare, Siddharth & Saha, Goutam & Bhattacharya, Joydeep, 2009. "Investigating long-range correlation properties in EEG during complex cognitive tasks," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2067-2073.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2067-2073
    DOI: 10.1016/j.chaos.2009.03.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conte, Elio & Khrennikov, Andrei & Federici, Antonio & Zbilut, Joseph P., 2009. "Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie f," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2790-2800.
    2. Ahlstrom, C. & Johansson, A. & Hult, P. & Ask, P., 2006. "Chaotic dynamics of respiratory sounds," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1054-1062.
    3. Joydeep Bhattacharya, 2009. "Increase of Universality in Human Brain during Mental Imagery from Visual Perception," PLOS ONE, Public Library of Science, vol. 4(1), pages 1-11, January.
    4. Pascolo, Paolo B. & Marini, Alfio & Carniel, Roberto & Barazza, Fausto, 2005. "Posture as a chaotic system and an application to the Parkinson’s disease," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1343-1346.
    5. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saha, Debajyoti & Ghosh, Sabuj & Shaw, Pankaj Kumar & Janaki, M.S. & Iyengar, A.N.S., 2018. "Interplay of transitions between oscillations with emergence of fireballs and quantification of phase coherence, scaling index in a magnetized glow discharge plasma in a toroidal assembly," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 295-303.
    2. Banerjee, Archi & Sanyal, Shankha & Patranabis, Anirban & Banerjee, Kaushik & Guhathakurta, Tarit & Sengupta, Ranjan & Ghosh, Dipak & Ghose, Partha, 2016. "Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 110-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhaduri, Anirban & Bhaduri, Susmita & Ghosh, Dipak, 2017. "Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 786-795.
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Pascolo, P. & Carniel, R. & Grimaz, S., 2009. "Dynamical models of the human eye and strabismus," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2463-2470.
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    6. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    7. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    8. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    9. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    10. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    11. Luis Alberiko Gil-Alaña & Carlos Pestana Barros & Zhongfei Chen, 2016. "The persistence of air pollution in four mega-cities of China," NCID Working Papers 04/2016, Navarra Center for International Development, University of Navarra.
    12. Renjini, Ammini & Swapna, Mohanachandran Nair Sindhu & Satheesh Kumar, Krishnan Nair & Sankararaman, Sankaranarayana Iyer, 2023. "Time series and mel frequency analyses of wet and dry cough signals: A neural net classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    13. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    14. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    15. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    16. Zhongxing Wang & Yan Yan & Xiaosong Chen, 2016. "Long-range Correlation and Market Segmentation in Bond Market," Papers 1610.09812, arXiv.org.
    17. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    18. Lyudmyla Kirichenko & Vitalii Bulakh & Tamara Radivilova, 2019. "Fractal Time Series Analysis of Social Network Activities," Papers 1905.01018, arXiv.org.
    19. Klaudia Kozlowska & Miroslaw Latka & Bruce J West, 2020. "Significance of trends in gait dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-25, October.
    20. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2067-2073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.