IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v95y2012icp139-146.html
   My bibliography  Save this article

Combustion and emission of rapeseed oil blends in diesel engine

Author

Listed:
  • Labecki, L.
  • Cairns, A.
  • Xia, J.
  • Megaritis, A.
  • Zhao, H.
  • Ganippa, L.C.

Abstract

Combustion and emission characteristics of rapeseed plant oil (RSO) and its blends with diesel fuel have been investigated in a multi-cylinder direct injection diesel engine. Plant oils have high viscosities compared to diesel and this affects the performance and durability of automotive diesel engines when used for longer time periods. Despite these adverse effects the exhaust emissions analysis show a significant reduction in NOx and relatively higher amount of soot for RSO compared to diesel fuel. An attempt has been made to reduce soot emissions from the combustion of RSO to exploit the advantage of its low NOx emissions. The strategy of varying injection parameters such as injection pressures and injection timings have been used in this work to reduce the soot emissions for blends of 50% and 30% RSO in diesel fuel. Using this strategy it was possible to achieve diesel equivalent levels of soot emission for 30% RSO blend. Under diesel equivalent soot emission levels, it was also possible to achieve a further reduction in NOx emissions by up to 22% for 30% RSO blend, this was achieved at the expense of THC, CO and BSFC. The exhaust soot particle number concentrations for 30% RSO blend reduces with an increase in injection pressure and retarded injection timing. However, when compared to diesel, the exhaust soot particle number concentration for 30% RSO blend was still higher, even after diesel equivalent level of soot emission was achieved.

Suggested Citation

  • Labecki, L. & Cairns, A. & Xia, J. & Megaritis, A. & Zhao, H. & Ganippa, L.C., 2012. "Combustion and emission of rapeseed oil blends in diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 139-146.
  • Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:139-146
    DOI: 10.1016/j.apenergy.2012.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altun, Şehmus & Bulut, Hüsamettin & Öner, Cengiz, 2008. "The comparison of engine performance and exhaust emission characteristics of sesame oil–diesel fuel mixture with diesel fuel in a direct injection diesel engine," Renewable Energy, Elsevier, vol. 33(8), pages 1791-1795.
    2. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    3. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    4. Purushothaman, K. & Nagarajan, G., 2009. "Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil," Renewable Energy, Elsevier, vol. 34(1), pages 242-245.
    5. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    6. Kegl, Breda, 2011. "Influence of biodiesel on engine combustion and emission characteristics," Applied Energy, Elsevier, vol. 88(5), pages 1803-1812, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    2. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
    3. Nemat Keramat Siavash & Golamhassan Najafi & Sayed Reza Hassan-Beygi & Hossain Ahmadian & Barat Ghobadian & Talal Yusaf & Mohammed Mazlan, 2021. "Time–Frequency Analysis of Diesel Engine Noise Using Biodiesel Fuel Blends," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    4. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    5. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    6. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    7. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    8. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    9. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    10. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    11. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    12. Ujor, Victor & Bharathidasan, Ashok Kumar & Cornish, Katrina & Ezeji, Thaddeus Chukwuemeka, 2014. "Feasibility of producing butanol from industrial starchy food wastes," Applied Energy, Elsevier, vol. 136(C), pages 590-598.
    13. Rinaldini, Carlo Alberto & Mattarelli, Enrico & Golovitchev, Valeri I., 2013. "Potential of the Miller cycle on a HSDI diesel automotive engine," Applied Energy, Elsevier, vol. 112(C), pages 102-119.
    14. Tian, Zhen-Yu & Chafik, Tarik & Assebban, Mhamed & Harti, Sanae & Bahlawane, Naoufal & Mountapmbeme Kouotou, Patrick & Kohse-Höinghaus, Katharina, 2013. "Towards biofuel combustion with an easily extruded clay as a natural catalyst," Applied Energy, Elsevier, vol. 107(C), pages 149-156.
    15. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    16. Duan, Xiongbo & Xu, Zhengxin & Sun, Xingyu & Deng, Banglin & Liu, Jingping, 2021. "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels," Energy, Elsevier, vol. 231(C).
    17. Edward Roper & Yaodong Wang & Zhichao Zhang, 2022. "Numerical Investigation of the Application of Miller Cycle and Low-Carbon Fuels to Increase Diesel Engine Efficiency and Reduce Emissions," Energies, MDPI, vol. 15(5), pages 1-20, February.
    18. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    20. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:95:y:2012:i:c:p:139-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.