IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp92-98.html
   My bibliography  Save this article

A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA

Author

Listed:
  • Krohn, Brian J.
  • Fripp, Matthias

Abstract

Camelina sativa (L.) is a promising crop for biodiesel production that avoids many of the potential pitfalls of traditional biofuel crops, such as land use change (LUC) and food versus fuel. In this study the environmental viability of camelina biodiesel was assessed using life cycle analysis (LCA) methodology. The LCA was conducted using the spreadsheet model dubbed KABAM. KABAM found that camelina grown as a niche filling crop (in rotation with wheat or as a double crop) reduces greenhouse gas (GHG) emissions and fossil fuel use by 40–60% when compared to petroleum diesel. Furthermore, by avoiding LUC emissions, camelina biodiesel emits fewer GHGs than traditional soybean and canola biodiesel. Finally, a sensitivity analysis concluded that in order to maintain and increase the environmental viability of camelina and other niche filling biofuel crops, researchers and policy makers should focus their efforts on achieving satisfactory yields (1000–2000kg/ha) while reducing nitrogen fertilizer inputs.

Suggested Citation

  • Krohn, Brian J. & Fripp, Matthias, 2012. "A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA," Applied Energy, Elsevier, vol. 92(C), pages 92-98.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:92-98
    DOI: 10.1016/j.apenergy.2011.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard J. Plevin, 2009. "Modeling Corn Ethanol and Climate," Journal of Industrial Ecology, Yale University, vol. 13(4), pages 495-507, August.
    2. Wang, Michael & Huo, Hong & Arora, Salil, 2011. "Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context," Energy Policy, Elsevier, vol. 39(10), pages 5726-5736, October.
    3. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    4. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    5. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    6. Escobar, José C. & Lora, Electo S. & Venturini, Osvaldo J. & Yáñez, Edgar E. & Castillo, Edgar F. & Almazan, Oscar, 2009. "Biofuels: Environment, technology and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1275-1287, August.
    7. Adam J. Liska & Haishun S. Yang & Virgil R. Bremer & Terry J. Klopfenstein & Daniel T. Walters & Galen E. Erickson & Kenneth G. Cassman, 2009. "Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn‐Ethanol," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 58-74, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).
    2. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    3. John M. Antle & Seojin Cho & S. M. Hossein Tabatabaie & Roberto O. Valdivia, 2019. "Economic and environmental performance of dryland wheat-based farming systems in a 1.5 °C world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 165-180, February.
    4. Cecchin, Andrea & Pourhashem, Ghasideh & Gesch, Russ W. & Lenssen, Andrew W. & Mohammed, Yesuf A. & Patel, Swetabh & Berti, Marisol T., 2021. "Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system," Agricultural Systems, Elsevier, vol. 189(C).
    5. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    6. Sainger, Manish & Jaiwal, Anjali & Sainger, Poonam Ahlawat & Chaudhary, Darshna & Jaiwal, Ranjana & Jaiwal, Pawan K., 2017. "Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 623-637.
    7. Miller, Patrick & Kumar, Amit, 2013. "Development of emission parameters and net energy ratio for renewable diesel from Canola and Camelina," Energy, Elsevier, vol. 58(C), pages 426-437.
    8. Andrea Cecchin & Ghasideh Pourhashem & Russ W. Gesch & Yesuf A. Mohammed & Swetabh Patel & Andrew W. Lenssen & Marisol T. Berti, 2021. "The Environmental Impact of Ecological Intensification in Soybean Cropping Systems in the U.S. Upper Midwest," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    9. Hanna Karlsson Potter & Dalia M. M. Yacout & Kajsa Henryson, 2023. "Climate Assessment of Vegetable Oil and Biodiesel from Camelina Grown as an Intermediate Crop in Cereal-Based Crop Rotations in Cold Climate Regions," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    10. Sabrina Spatari & Alexander Stadel & Paul R. Adler & Saurajyoti Kar & William J. Parton & Kevin B. Hicks & Andrew J. McAloon & Patrick L. Gurian, 2020. "The Role of Biorefinery Co-Products, Market Proximity and Feedstock Environmental Footprint in Meeting Biofuel Policy Goals for Winter Barley-to-Ethanol," Energies, MDPI, vol. 13(9), pages 1-15, May.
    11. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    12. Keshavarz-Afshar, Reza & Mohammed, Yesuf Assen & Chen, Chengci, 2015. "Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen," Energy, Elsevier, vol. 91(C), pages 1057-1063.
    13. Iris Montero-Muñoz & David Mostaza-Colado & Aníbal Capuano & Pedro V. Mauri Ablanque, 2023. "Seed and Straw Characterization of Nine New Varieties of Camelina sativa (L.) Crantz," Land, MDPI, vol. 12(2), pages 1-12, January.
    14. Bacenetti, Jacopo & Restuccia, Andrea & Schillaci, Gianpaolo & Failla, Sabina, 2017. "Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment," Renewable Energy, Elsevier, vol. 112(C), pages 444-456.
    15. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    16. Piernicola Masella & Incoronata Galasso, 2020. "A Comparative Cradle-to-Gate Life Cycle Study of Bio-Energy Feedstock from Camelina sativa , an Italian Case Study," Sustainability, MDPI, vol. 12(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    2. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    3. Menten, Fabio & Chèze, Benoît & Patouillard, Laure & Bouvart, Frédérique, 2013. "A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 108-134.
    4. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    5. Boies, Adam M. & McFarlane, Dane & Taff, Steven & Watts, Winthrop F. & Kittelson, David B., 2011. "Implications of local lifecycle analyses and low carbon fuel standard design on gasohol transportation fuels," Energy Policy, Elsevier, vol. 39(11), pages 7191-7201.
    6. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    7. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    8. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Piroli, Giuseppe & Rajcaniova, Miroslava & Ciaian, Pavel & Kancs, d׳Artis, 2015. "From a rise in B to a fall in C? SVAR analysis of environmental impact of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 921-930.
    10. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    11. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    12. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    13. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    14. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    15. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    16. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.
    17. Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.
    18. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    20. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:92-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.