IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i7p2212-2217.html
   My bibliography  Save this article

Anaerobic digestion of maize focusing on variety, harvest time and pretreatment

Author

Listed:
  • Bruni, Emiliano
  • Jensen, Anders Peter
  • Pedersen, Erik Silkjær
  • Angelidaki, Irini

Abstract

The methane potential of six varieties of fresh maize (whole plant) harvested at three different times and of maize silage (whole plant) in two particle size distributions was experimentally determined in batch assays. Fresh maize gave the highest methane yield/hectare at late harvest (6270 m3 CH4 (104 m2)-1). The methane yield/wet weight (WW) increased from 80 (early harvest) to 137 m3 CH4 (t WW)-1 (late harvest). Maize harvested at different times, or different varieties of maize had similar specific methane production/volatile solids content (m3 CH4 (kg VS)-1). The measured yield m3 CH4 (kg VS)-1 was 84% of the theoretical methane potential. The estimated ethanol yield was between 2.5 and 3.5 t ethanol (104 m2)-1. The energy yield was 62 and 19-22 MWh (104 m2)-1 if fresh maize (whole plant) is used for methane or ethanol production respectively. Reducing the particle size of maize silage to an average size of approximately 2 mm increased the methane yield m3 CH4 (kg VS)-1 by approximately 10%.

Suggested Citation

  • Bruni, Emiliano & Jensen, Anders Peter & Pedersen, Erik Silkjær & Angelidaki, Irini, 2010. "Anaerobic digestion of maize focusing on variety, harvest time and pretreatment," Applied Energy, Elsevier, vol. 87(7), pages 2212-2217, July.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2212-2217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00006-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
    2. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    3. Fernandez, Helen Coarita & Buffiere, Pierre & Bayard, Rémy, 2022. "Understanding the role of mechanical pretreatment before anaerobic digestion: Lab-scale investigations," Renewable Energy, Elsevier, vol. 187(C), pages 193-203.
    4. Win, Shwe S. & Ebner, Jacqueline H. & Brownell, Sarah A. & Pagano, Susan S. & Cruz-Diloné, Pedro & Trabold, Thomas A., 2018. "Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrated biorefinery," Renewable Energy, Elsevier, vol. 127(C), pages 705-712.
    5. Capponi, Simone & Fazio, Simone & Barbanti, Lorenzo, 2012. "CO2 savings affect the break-even distance of feedstock supply and digestate placement in biogas production," Renewable Energy, Elsevier, vol. 37(1), pages 45-52.
    6. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    7. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    8. Ihsan Hamawand & Craig Baillie, 2015. "Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes," Energies, MDPI, vol. 8(1), pages 1-21, January.
    9. Fabio De Menna & Remo Alessio Malagnino & Matteo Vittuari & Giovanni Molari & Giovanna Seddaiu & Paola A. Deligios & Stefania Solinas & Luigi Ledda, 2016. "Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy," Energies, MDPI, vol. 9(2), pages 1-11, February.
    10. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    11. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    12. Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo & Søren Ugilt Larsen & Kasper Stefanek & Sven G. Sommer, 2016. "Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids," Energies, MDPI, vol. 9(5), pages 1-11, May.
    13. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    14. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    15. Bekkering, J. & Broekhuis, A.A. & van Gemert, W.J.T. & Hengeveld, E.J., 2013. "Balancing gas supply and demand with a sustainable gas supply chain – A study based on field data," Applied Energy, Elsevier, vol. 111(C), pages 842-852.
    16. Ortner, Markus & Rachbauer, Lydia & Somitsch, Walter & Fuchs, Werner, 2014. "Can bioavailability of trace nutrients be measured in anaerobic digestion?," Applied Energy, Elsevier, vol. 126(C), pages 190-198.
    17. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2212-2217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.