Advanced Search
MyIDEAS: Login

Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings


Author Info

  • Karunakaran, R.
  • Iniyan, S.
  • Goic, Ranko
Registered author(s):


    Energy conservative building design has triggered greater interests in developing flexible and sophisticated air conditioning systems capable of achieving enhanced energy-savings potential without sacrificing the desired thermal comfort and indoor air quality (IAQ). This research work greatly aimed at achieving enhanced energy conservation, good thermal comfort and better IAQ for space conditioning with the application of combined variable refrigerant volume (VRV) and variable air volume (VAV) air conditioning (A/C) systems. Experimental investigation on the proposed combined air conditioning system with the application of intelligent fuzzy logic controller was performed for summer and winter climatic conditions to substantiate the energy-savings capability. The proposed system experimentally analyzed under fixed ventilation, demand controlled ventilation (DCV) and combined DCV and economizer cycle (EC) ventilation techniques effectively conserved 44% and 63% of per day average energy-savings in summer and winter design conditions respectively, while compared to the conventional constant air volume (CAV) A/C system. The results of the present investigation have proved that the proposed combined air conditioning system operated under the different ventilation strategies and controlled by the intelligent fuzzy logic controller (FLC) can be considered as an efficient technology to achieve good thermal comfort, IAQ and energy conservation in the modern heating, ventilation and air conditioning (HVAC) applications.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 87 (2010)
    Issue (Month): 4 (April)
    Pages: 1158-1175

    as in new window
    Handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1158-1175

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Energy conservation Fuzzy logic Indoor air quality Thermal comfort Ventilation Variable refrigerant volume Variable air volume;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Liang, Xia & Chan, M.Y. & Shiming, Deng, 2008. "Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units," Applied Energy, Elsevier, vol. 85(12), pages 1198-1207, December.
    2. Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Antonopoulos, K.A. & Gioti, F. & Tzivanidis, C., 2010. "A transient model for the energy analysis of indoor spaces," Applied Energy, Elsevier, vol. 87(10), pages 3084-3091, October.
    2. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    3. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    4. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    5. Tzivanidis, C. & Antonopoulos, K.A. & Gioti, F., 2011. "Numerical simulation of cooling energy consumption in connection with thermostat operation mode and comfort requirements for the Athens buildings," Applied Energy, Elsevier, vol. 88(8), pages 2871-2884, August.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1158-1175. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.