IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1074-1079.html
   My bibliography  Save this article

The gain of single-axis tracked panel according to extraterrestrial radiation

Author

Listed:
  • Chang, Tian Pau

Abstract

In the present study, the gain in extraterrestrial radiation received by a single-axis tracked panel relative to a fixed panel was systematically analyzed over a specific period of time. The dynamic angle that the tracked panel should rotate by in order to follow the sun was derived through a series of spherical trigonometric procedures. The instantaneous incident angle of sunlight upon the panel was then calculated, assuming that the panel would simultaneously follow the sun's position. Thus, instantaneous increments of solar energy received by the tracked panel relative to the fixed panel are originally presented. The results show that the angle the tracked panel has to rotate by is 0° at solar noon, and increases towards dawn or dusk. The incident angle of sunlight upon the tracked panel is always smaller than that upon the fixed panel, except at solar noon. As for panels installed with a yearly optimal tilt angle in Taipei, the gains are between 36.3% and 62.1% for four particular days of year, between 37.8% and 60.8% for the four seasons and 49.3% over the entire year. The amount of radiation collected by the tracked panel is enhanced as the maximum rotation angle is increased. The irradiation ratio of the tracked panel to the fixed panel is close to 1.5 for latitudes below 65° and gradually increases for latitudes above this. The yearly optimal tilt angle of a south-facing fixed panel is approximately equal to 0.9 multiplied by the latitude (i.e. 0.9 x [phi]) for latitudes below 65° and is about 56 + 0.4 x ([phi] - 65) otherwise.

Suggested Citation

  • Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1074-1079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00183-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cucumo, M. & Kaliakatsos, D. & Marinelli, V., 1997. "General calculation methods for solar trajectories," Renewable Energy, Elsevier, vol. 11(2), pages 223-234.
    2. Tomson, Teolan, 2008. "Discrete two-positional tracking of solar collectors," Renewable Energy, Elsevier, vol. 33(3), pages 400-405.
    3. Ibrahim, D., 1995. "Optimum tilt angle for solar collectors used in Cyprus," Renewable Energy, Elsevier, vol. 6(7), pages 813-819.
    4. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    5. Yakup, Mohd Azmi bin Hj Mohd & Malik, A.Q, 2001. "Optimum tilt angle and orientation for solar collector in Brunei Darussalam," Renewable Energy, Elsevier, vol. 24(2), pages 223-234.
    6. Morcos, V.H., 1994. "Optimum tilt angle and orientation for solar collectors in Assiut, Egypt," Renewable Energy, Elsevier, vol. 4(3), pages 291-298.
    7. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    8. Nijegorodov, N. & Devan, K.R.S. & Jain, P.K. & Carlsson, S., 1994. "Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude," Renewable Energy, Elsevier, vol. 4(5), pages 529-543.
    9. Soulayman, S.Sh., 1991. "On the optimum tilt of solar absorber plates," Renewable Energy, Elsevier, vol. 1(3), pages 551-554.
    10. Chow, T. T. & Chan, A. L. S., 2004. "Numerical study of desirable solar-collector orientations for the coastal region of South China," Applied Energy, Elsevier, vol. 79(3), pages 249-260, November.
    11. Tang, Runsheng & Wu, Tong, 2004. "Optimal tilt-angles for solar collectors used in China," Applied Energy, Elsevier, vol. 79(3), pages 239-248, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2010. "Optical performance of inclined south-north single-axis tracked solar panels," Energy, Elsevier, vol. 35(6), pages 2511-2516.
    2. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2011. "Optical performance of vertical single-axis tracked solar panels," Renewable Energy, Elsevier, vol. 36(1), pages 64-68.
    3. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    4. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    5. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    6. Yaichi, Mohammed & Tayebi, Azzedinne & Mammeri, Abdelkrim & Boutadara, Abdelkader, 2022. "Performance of a PV field's discontinuous two-position sun tracker systems supplying a water pumping system: Concept, theoretical and experimental studies – A case study of the Adrar area in Algeria's," Renewable Energy, Elsevier, vol. 201(P1), pages 548-562.
    7. Cruz-Peragón, Fernando & Casanova-Peláez, Pedro J. & Díaz, Francisco A. & López-García, Rafael & Palomar, José M., 2011. "An approach to evaluate the energy advantage of two axes solar tracking systems in Spain," Applied Energy, Elsevier, vol. 88(12), pages 5131-5142.
    8. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    9. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    10. Kung, Chih-Chun & McCarl, Bruce A., 2020. "The potential role of renewable electricity generation in Taiwan," Energy Policy, Elsevier, vol. 138(C).
    11. Ahmad, Naseer & Sheikh, Anwar K. & Gandhidasan, P. & Elshafie, Moustafa, 2015. "Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 433-447.
    12. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    13. Lubitz, William David, 2011. "Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1710-1719, May.
    14. Zhong, Hao & Li, Guihua & Tang, Runsheng & Dong, Wenli, 2011. "Optical performance of inclined south–north axis three-positions tracked solar panels," Energy, Elsevier, vol. 36(2), pages 1171-1179.
    15. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    16. Şenpinar, Ahmet & Cebeci, Mehmet, 2012. "Evaluation of power output for fixed and two-axis tracking PVarrays," Applied Energy, Elsevier, vol. 92(C), pages 677-685.
    17. Dadi Wang, 2017. "Benchmarking the Performance of Solar Installers and Rooftop Photovoltaic Installations in California," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    18. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    19. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    20. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    21. Ma, Yi & Li, Guihua & Tang, Runsheng, 2011. "Optical performance of vertical axis three azimuth angles tracked solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1784-1791, May.
    22. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    23. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    24. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    2. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    3. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    4. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    5. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    6. Rehman, Naveed ur & Uzair, Muhammad, 2020. "Optimizing the inclined field for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 153(C), pages 280-289.
    7. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    8. Le Roux, W.G., 2016. "Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data," Renewable Energy, Elsevier, vol. 96(PA), pages 603-612.
    9. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    10. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    11. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Francisco Manzano-Agugliaro, 2020. "Estimating the Optimum Tilt Angles for South-Facing Surfaces in Palestine," Energies, MDPI, vol. 13(3), pages 1-29, February.
    12. Herrera-Romero, J.V. & Colorado-Garrido, D. & Escalante Soberanis, M.A. & Flota-Bañuelos, M., 2020. "Estimation of the optimum tilt angle of solar collectors in Coatzacoalcos, Veracruz," Renewable Energy, Elsevier, vol. 153(C), pages 615-623.
    13. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    14. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    15. Chang, Tian Pau, 2009. "Performance evaluation for solar collectors in Taiwan," Energy, Elsevier, vol. 34(1), pages 32-40.
    16. Chang, Tian Pau, 2009. "Output energy of a photovoltaic module mounted on a single-axis tracking system," Applied Energy, Elsevier, vol. 86(10), pages 2071-2078, October.
    17. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    18. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    19. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2010. "Optical performance of inclined south-north single-axis tracked solar panels," Energy, Elsevier, vol. 35(6), pages 2511-2516.
    20. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2011. "Optical performance of vertical single-axis tracked solar panels," Renewable Energy, Elsevier, vol. 36(1), pages 64-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1074-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.