IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1836-1845.html
   My bibliography  Save this article

Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University

Author

Listed:
  • Tong, Andrew
  • Bayham, Samuel
  • Kathe, Mandar V.
  • Zeng, Liang
  • Luo, Siwei
  • Fan, Liang-Shih

Abstract

The increasing demands for energy and concern of global warming are intertwined issues of critical importance. With the pressing need for clean, efficient, and cost-effective energy conversion processes, the chemical looping strategy has evolved as a promising alternative to the traditional carbonaceous fuel conversion processes. Chemical looping processes utilize oxygen carrier particles to indirectly convert carbonaceous fuels while capturing CO2 for sequestration and/or utilization. Throughout its development, multiple oxygen carrier compositions and reactor configurations have been studied and demonstrated. The Ohio State University (OSU) chemical looping technologies have received significant attention over the recent years. OSU’s unique moving-bed chemical looping technologies coupled with iron-based oxygen carrier particles capable of sustaining hundreds of redox cycles have the advantage of converting a variety of carbonaceous fuels, such as natural gas, coal and biomass, to electricity, H2, liquid fuels, or any combination thereof with zero to negative net CO2 emissions. Specifically, two chemical looping processes are being developed and studied, the syngas chemical looping (SCL) and the coal direct chemical looping (CDCL) technologies. Over the past 14years, these processes have developed from a novel concept to successful sub-pilot (25kWth) demonstrations. With the support of the Advanced Research Projects Agency – Energy (ARPA-E) of the US Department of Energy (USDOE), a 250kWth high pressure SCL pilot scale demonstration project was initiated for processing syngas to cogenerate pure H2 and sequestration-ready CO2 from a Kellogg Brown & Root gasifier at the National Carbon Capture Center. A 25kWth CDCL sub-pilot plant has been constructed and demonstrated at OSU with the support from National Energy Technology Laboratory (NETL) of the United States Department of Energy (USDOE). The combined SCL and CDCL operational time at reactive conditions well exceeds 850h. Multiple aspects of the OSU chemical looping development including the oxygen carrier properties, reaction mechanism studies, reactor design and modeling studies, the bench and sub-pilot scale process testing results, energy integration optimization, and techno-economic analyzes are discussed.

Suggested Citation

  • Tong, Andrew & Bayham, Samuel & Kathe, Mandar V. & Zeng, Liang & Luo, Siwei & Fan, Liang-Shih, 2014. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1836-1845.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1836-1845
    DOI: 10.1016/j.apenergy.2013.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300425X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1836-1845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.