IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v105y2013icp380-388.html
   My bibliography  Save this article

Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst

Author

Listed:
  • Badday, Ali Sabri
  • Abdullah, Ahmad Zuhairi
  • Lee, Keat-Teong

Abstract

Fatty acid methyl esters synthesis from crude Jatropha oil using an ultrasound-assisted process was investigated. Several gamma alumina (Al) supported tungstophosphoric acid (TPA) catalysts were synthesized and characterized to elucidate their catalytic behaviors. TPA loadings on the support between 15% and 35% were investigated. The catalyst with 25% loading achieved the highest yield of 64.3% in 60min. Effects of reaction time (10–50min), reaction molar ratio (5:1–25:1), ultrasonic amplitude (30–90% of the maximum sonifier power) and catalyst amount (2.5–4.5w/w oil) were investigated and optimized. Mathematical representation of FAME yield was successfully generated and statistically validated. A highest reaction yield of 84% was achieved under the optimum conditions i.e. at an ultrasonic amplitude of ∼60%, a molar ratio of 19:1 and a reaction temperature of 65°C in just 50min. Interactions between the reaction variables were also statistically validated. The catalyst was also investigated for possible reusability.

Suggested Citation

  • Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst," Applied Energy, Elsevier, vol. 105(C), pages 380-388.
  • Handle: RePEc:eee:appene:v:105:y:2013:i:c:p:380-388
    DOI: 10.1016/j.apenergy.2013.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veljković, Vlada B. & Avramović, Jelena M. & Stamenković, Olivera S., 2012. "Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1193-1209.
    2. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    3. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    4. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    5. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    6. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat Teong & Khayoon, Muataz Sh., 2012. "Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4574-4587.
    7. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    8. Yin, Xiulian & Ma, Haile & You, Qinghong & Wang, Zhenbin & Chang, Jinke, 2012. "Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil," Applied Energy, Elsevier, vol. 91(1), pages 320-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Conceição, Leyvison Rafael V. & Carneiro, Livia M. & Giordani, Domingos S. & de Castro, Heizir F., 2017. "Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia," Renewable Energy, Elsevier, vol. 113(C), pages 119-128.
    2. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    3. Hu, Liangdong & Ma, Longlong & Hu, Guangzhi & Zhang, Wenjie & Liu, Ying & Xu, Rui & Ge, Wen & Chen, Yubao, 2022. "Utilization of illumination and thermal field in the preparation of jet–fuel components: The photothermic catalysis of Jatropha oil over the M/TiO2–HZSM–5," Energy, Elsevier, vol. 239(PC).
    4. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    5. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    6. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system," Renewable Energy, Elsevier, vol. 62(C), pages 10-17.
    7. Bora, Akash Pratim & Konda, Lutukurthi D.N.V.V. & Pasupuleti, Srinivas & Durbha, Krishna Sandilya, 2022. "Synthesis of MgO/MgSO4 nanocatalyst by thiourea–nitrate solution combustion for biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 190(C), pages 474-486.
    8. Zhu, Qing-li & Shao, Rong & Dong, Rui & Yun, Zhi, 2014. "An integrated approach for obtaining biodiesel, sterols, gossypol, and raffinose from cottonseed on a biorefinery concept," Energy, Elsevier, vol. 70(C), pages 149-158.
    9. Badawy, Tawfik & Mansour, Mohy S. & Daabo, Ahmed M. & Abdel Aziz, Mostafa M. & Othman, Abdelrahman A. & Barsoum, Fady & Basouni, Mohamed & Hussien, Mohamed & Ghareeb, Mourad & Hamza, Mahmoud & Wang, C, 2021. "Selection of second-generation crop for biodiesel extraction and testing its impact with nano additives on diesel engine performance and emissions," Energy, Elsevier, vol. 237(C).
    10. Pleşu, Valentin & Subirana Puigcasas, Joan & Benet Surroca, Guillem & Bonet, Jordi & Bonet Ruiz, Alexandra E. & Tuluc, Alexandru & Llorens, Joan, 2015. "Process intensification in biodiesel production with energy reduction by pinch analysis," Energy, Elsevier, vol. 79(C), pages 273-287.
    11. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    2. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat Teong & Khayoon, Muataz Sh., 2012. "Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4574-4587.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    5. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    6. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    7. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    8. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system," Renewable Energy, Elsevier, vol. 62(C), pages 10-17.
    9. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    11. Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
    12. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    13. Guan, Qingqing & Shang, Hua & Liu, Jing & Gu, Junjie & Li, Bin & Miao, Rongrong & Chen, Qiuling & Ning, Ping, 2016. "Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application," Applied Energy, Elsevier, vol. 164(C), pages 380-386.
    14. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.
    15. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Optimization of biodiesel production process from Jatropha oil using supported heteropolyacid catalyst and assisted by ultrasonic energy," Renewable Energy, Elsevier, vol. 50(C), pages 427-432.
    16. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    17. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    18. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    19. Su, Chia-Hung, 2013. "Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production," Applied Energy, Elsevier, vol. 104(C), pages 503-509.
    20. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:105:y:2013:i:c:p:380-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.