IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v104y2013icp1-9.html
   My bibliography  Save this article

A methodology for the low-cost optimisation of small wind turbine performance

Author

Listed:
  • Arroyo, A.
  • Manana, M.
  • Gomez, C.
  • Fernandez, I.
  • Delgado, F.
  • Zobaa, Ahmed F.

Abstract

The increasing use of small wind energy has made it necessary to develop new methods to improve the efficiency of this technology. This improvement is best achieved considering the interaction between the various components, such as the wind rotors, the electrical generators, the rectifiers and the inverters, as opposed to studying the individual components in isolation. This paper describes a methodology to increase the efficiency of Small Wind Turbines (SWTs) equipped with a Permanent Magnet Synchronous Machine (PMSM). To achieve this objective, capacitor banks will be connected between the PMSM and the rectifier. This methodology is motivated by two clear aims. The first one is to operate the SWT with its maximum power coefficient Cp. The second one is to select the most suitable capacitor bank for each wind speed to optimise the energy supplied to the grid. The methodology will be tested on a commercial 3.5kW SWT, and the results will be studied to determine its feasibility.

Suggested Citation

  • Arroyo, A. & Manana, M. & Gomez, C. & Fernandez, I. & Delgado, F. & Zobaa, Ahmed F., 2013. "A methodology for the low-cost optimisation of small wind turbine performance," Applied Energy, Elsevier, vol. 104(C), pages 1-9.
  • Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:1-9
    DOI: 10.1016/j.apenergy.2012.10.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912008008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.10.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Paor, A. M., 1982. "Aerodynamic design of optimum wind turbines," Applied Energy, Elsevier, vol. 12(3), pages 221-228, November.
    2. Succar, Samir & Denkenberger, David C. & Williams, Robert H., 2012. "Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage," Applied Energy, Elsevier, vol. 96(C), pages 222-234.
    3. Arifujjaman, Md. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Reliability analysis of grid connected small wind turbine power electronics," Applied Energy, Elsevier, vol. 86(9), pages 1617-1623, September.
    4. Eriksson, Sandra & Bernhoff, Hans, 2011. "Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power," Applied Energy, Elsevier, vol. 88(1), pages 265-271, January.
    5. Kesraoui, M. & Korichi, N. & Belkadi, A., 2011. "Maximum power point tracker of wind energy conversion system," Renewable Energy, Elsevier, vol. 36(10), pages 2655-2662.
    6. Power, Henry M., 1980. "A simulation model for wind turbines," Applied Energy, Elsevier, vol. 6(5), pages 395-399, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    2. Bertašienė, Agnė & Azzopardi, Brian, 2015. "Synergies of Wind Turbine control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 336-342.
    3. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    4. Xu, F.J. & Yuan, F.G. & Hu, J.Z. & Qiu, Y.P., 2014. "Miniature horizontal axis wind turbine system for multipurpose application," Energy, Elsevier, vol. 75(C), pages 216-224.
    5. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    6. Carré, Aurélien & Gasnier, Pierre & Roux, Émile & Tabourot, Laurent, 2022. "Extending the operating limits and performances of centimetre-scale wind turbines through biomimicry," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    2. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    3. Audierne, Etienne & Elizondo, Jorge & Bergami, Leonardo & Ibarra, Humberto & Probst, Oliver, 2010. "Analysis of the furling behavior of small wind turbines," Applied Energy, Elsevier, vol. 87(7), pages 2278-2292, July.
    4. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    5. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    6. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    7. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Rimkevicius, Sigitas & Kaliatka, Algirdas & Valincius, Mindaugas & Dundulis, Gintautas & Janulionis, Remigijus & Grybenas, Albertas & Zutautaite, Inga, 2012. "Development of approach for reliability assessment of pipeline network systems," Applied Energy, Elsevier, vol. 94(C), pages 22-33.
    9. Yang, Ting & Pen, Haibo & Wang, Dan & Wang, Zhaoxia, 2016. "Harmonic analysis in integrated energy system based on compressed sensing," Applied Energy, Elsevier, vol. 165(C), pages 583-591.
    10. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    11. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    12. Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
    13. Sun, Xu & Liu, Yanli & Deng, Liangchen, 2020. "Reliability assessment of cyber-physical distribution network based on the fault tree," Renewable Energy, Elsevier, vol. 155(C), pages 1411-1424.
    14. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    15. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
    16. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    17. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    18. Amir Raouf & Kotb B. Tawfiq & Elsayed Tag Eldin & Hossam Youssef & Elwy E. El-Kholy, 2023. "Wind Energy Conversion Systems Based on a Synchronous Generator: Comparative Review of Control Methods and Performance," Energies, MDPI, vol. 16(5), pages 1-22, February.
    19. Gomis-Bellmunt, Oriol & Junyent-Ferré, Adrià & Sumper, Andreas & Galceran-Arellano, Samuel, 2010. "Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter," Applied Energy, Elsevier, vol. 87(10), pages 3103-3109, October.
    20. Sun, Hao & Luo, Xing & Wang, Jihong, 2015. "Feasibility study of a hybrid wind turbine system – Integration with compressed air energy storage," Applied Energy, Elsevier, vol. 137(C), pages 617-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:104:y:2013:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.