IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp908-922.html
   My bibliography  Save this article

Viability analysis of solar parabolic dish stand-alone power plant for Indian conditions

Author

Listed:
  • Reddy, K.S.
  • Veershetty, G.

Abstract

The solar parabolic dish collector is one of the most efficient energy conversion technologies among the concentrating solar power (CSP) systems. The design and implementation of solar parabolic dish power plants will result in sustainable energy generation. In this article, techno-economic feasibility analysis of a 5MWe solar parabolic dish collector field is carried out for entire India covering 58 locations. The solar parabolic dish power plant configuration is investigated based on various parameters such as the spacing between dish collectors, land area required, percentage of the shadow and energy yield. The shadow profile around the dish throughout the year at various latitudes (8–35°N) for various plant-operating hours is determined. In-line arrangement of the solar dish collector arrays is found to be a better choice in terms of the minimum land area required for setting up the power plant. The generalized correlations are developed for both east–west and north–south spacing distances as the function of latitude and plant operating hours. It is found that the configuration corresponding to the plant operating from 1h after sunrise to 1h before sunset with spacing distance in east–west direction equal to the shadow length after 2h sunrise and in north–south direction equal to shadow length at noon for winter solstice gives the highest energy output with optimum land use. The minimum and maximum average annual power generation at Panaji and Tiruchirapalli are 7.25GWh, and 12.68GWh respectively. The minimum levelised electricity cost (LEC) for a stand-alone solar parabolic dish power plant with the clean development mechanism (CDM) is found to be INR 9.83 ($ 0.197, 1$=INR 50) at Indore with payback period of 10.63years with cost benefit ratio of 1.48. Based on the financial performance, most of the northern region locations and some of the western and southern region locations are found attractive for power generation by the solar parabolic dish power collector based on the direct steam generation, where direct normal irradiation (DNI) is more than 5kWh/m2day.

Suggested Citation

  • Reddy, K.S. & Veershetty, G., 2013. "Viability analysis of solar parabolic dish stand-alone power plant for Indian conditions," Applied Energy, Elsevier, vol. 102(C), pages 908-922.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:908-922
    DOI: 10.1016/j.apenergy.2012.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poullikkas, Andreas, 2009. "Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region--A case study for the island of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2474-2484, December.
    2. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    3. Beerbaum, S & Weinrebe, G, 2000. "Solar thermal power generation in India—a techno–economic analysis," Renewable Energy, Elsevier, vol. 21(2), pages 153-174.
    4. Arbab, H. & Jazi, B. & Rezagholizadeh, M., 2009. "A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow," Renewable Energy, Elsevier, vol. 34(4), pages 1114-1118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
    2. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    3. Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnamurthy, Pranesh & Mishra, Shreya & Banerjee, Rangan, 2012. "An analysis of costs of parabolic trough technology in India," Energy Policy, Elsevier, vol. 48(C), pages 407-419.
    2. Malagueta, Diego & Szklo, Alexandre & Soria, Rafael & Dutra, Ricardo & Schaeffer, Roberto & Moreira Cesar Borba, Bruno Soares, 2014. "Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system," Renewable Energy, Elsevier, vol. 68(C), pages 223-235.
    3. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    4. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    5. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    6. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    7. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    8. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    9. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    10. Wagner, Sharon J. & Rubin, Edward S., 2014. "Economic implications of thermal energy storage for concentrated solar thermal power," Renewable Energy, Elsevier, vol. 61(C), pages 81-95.
    11. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    12. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    13. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    15. Lohan, Shiv Kumar & Dixit, Jagvir & Modasir, Sheikh & Ishaq, Mohd., 2012. "Resource potential and scope of utilization of renewable energy in Jammu and Kashmir, India," Renewable Energy, Elsevier, vol. 39(1), pages 24-29.
    16. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    17. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    18. Jorge M. Llamas & David Bullejos & Manuel Ruiz de Adana, 2019. "Optimization of 100 MW e Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions," Energies, MDPI, vol. 12(20), pages 1-23, October.
    19. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    20. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:908-922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.