IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2010i3p385-402.html
   My bibliography  Save this article

Decentralised water and wastewater treatment technologies to produce functional water for irrigation

Author

Listed:
  • Battilani, Adriano
  • Steiner, Michele
  • Andersen, Martin
  • Back, Soren Nohr
  • Lorenzen, J.
  • Schweitzer, Avi
  • Dalsgaard, Anders
  • Forslund, Anita
  • Gola, Secondo
  • Klopmann, Wolfram
  • Plauborg, Finn
  • Andersen, Mathias N.

Abstract

The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel filters and heavy-metal specific adsorption materials. Decentralised compact pressurised membrane biobooster (MBR), was able to remove up to 99.99% of the inlet Escherichia coli and 98.52% of total coliforms. E. coli was completely removed from irrigation water in 53% of the samples by the last MBR prototype version. In 2008, 100% of samples fulfilled WHO standards (1989) and Global Gap requirement for faecal contamination. MBR removed from inlet flow in the average 82% of arsenic, 82% of cadmium, 97% of chromium, 93% of copper and 99% of lead. Boron and manganese were not removed from permeate. The field treatment system (FTS) proved to be effective against faecal contamination when applied with its complete set up including UV treatment. The sole gravel filter and heavy metal removal device (HMR) cannot provide sufficient and steadily treatment for microbial contamination. Nevertheless, gravel filter can remove up to 60% of E. coli but the removal process was not stable nor predictable. FTS removed 76% of arsenic, 80% of cadmium and copper, 88% of chromium and lead, and up to 97% of zinc. Like the MBR, boron and manganese were not removed from the irrigation water. Gravel filter directly fed with secondary treated wastewater was found able to remove 41% of arsenic, 36% of cadmium and lead, 48% of chromium and 46% of copper. The residual heavy metals concentration after the gravel filter was further reduced by the HMR: 35% for arsenic, 22% for cadmium, 25% for chromium, 33% for copper and 53% for lead.

Suggested Citation

  • Battilani, Adriano & Steiner, Michele & Andersen, Martin & Back, Soren Nohr & Lorenzen, J. & Schweitzer, Avi & Dalsgaard, Anders & Forslund, Anita & Gola, Secondo & Klopmann, Wolfram & Plauborg, Finn , 2010. "Decentralised water and wastewater treatment technologies to produce functional water for irrigation," Agricultural Water Management, Elsevier, vol. 98(3), pages 385-402, December.
  • Handle: RePEc:eee:agiwat:v:98:y:2010:i:3:p:385-402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00331-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maton, Laure & Psarras, Georgios & Kasapakis, Giannis & Ravn Lorenzen, Jesper & Andersen, Martin & Boesen, Mads & Nøhr Bak, Søren & Chartzoulakis, Kostas & Marcus Pedersen, Soren & Kloppmann, Wolfram, 2010. "Assessing the net benefits of using wastewater treated with a membrane bioreactor for irrigating vegetables in Crete," Agricultural Water Management, Elsevier, vol. 98(3), pages 458-464, December.
    2. Surdyk, N. & Cary, L. & Blagojevic, S. & Jovanovic, Z. & Stikic, R. & Vucelic-Radovic, B. & Zarkovic, B. & Sandei, L. & Pettenati, M. & Kloppmann, W., 2010. "Impact of irrigation with treated low quality water on the heavy metal contents of a soil-crop system in Serbia," Agricultural Water Management, Elsevier, vol. 98(3), pages 451-457, December.
    3. Forslund, A. & Ensink, J.H.J. & Battilani, A. & Kljujev, I. & Gola, S. & Raicevic, V. & Jovanovic, Z. & Stikic, R. & Sandei, L. & Fletcher, T. & Dalsgaard, A., 2010. "Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes (Solanum tuberosum)," Agricultural Water Management, Elsevier, vol. 98(3), pages 440-450, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Styczen, M. & Poulsen, R.N. & Falk, A.K. & Jørgensen, G.H., 2010. "Management model for decision support when applying low quality water in irrigation," Agricultural Water Management, Elsevier, vol. 98(3), pages 472-481, December.
    2. Plauborg, Finn & Andersen, Mathias N. & Liu, Fulai & Ensink, Jeroen & Ragab, Ragab, 2010. "Safe and high quality food production using low quality waters and improved irrigation systems and management: SAFIR," Agricultural Water Management, Elsevier, vol. 98(3), pages 377-384, December.
    3. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plauborg, Finn & Andersen, Mathias N. & Liu, Fulai & Ensink, Jeroen & Ragab, Ragab, 2010. "Safe and high quality food production using low quality waters and improved irrigation systems and management: SAFIR," Agricultural Water Management, Elsevier, vol. 98(3), pages 377-384, December.
    2. Styczen, M. & Poulsen, R.N. & Falk, A.K. & Jørgensen, G.H., 2010. "Management model for decision support when applying low quality water in irrigation," Agricultural Water Management, Elsevier, vol. 98(3), pages 472-481, December.
    3. Ørum, Jens Erik & Boesen, Mads Vejlby & Jovanovic, Zorica & Pedersen, Søren Marcus, 2010. "Farmers' incentives to save water with new irrigation systems and water taxation--A case study of Serbian potato production," Agricultural Water Management, Elsevier, vol. 98(3), pages 465-471, December.
    4. Sofia Dias & Ana P. Mucha & Rute Duarte Crespo & Pedro Rodrigues & C. Marisa R. Almeida, 2020. "Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    5. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.
    6. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Martina Artmann & Katharina Sartison, 2018. "The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    8. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2018. "Reusing oil and gas produced water for irrigation of food crops in drylands," Agricultural Water Management, Elsevier, vol. 206(C), pages 124-134.
    9. Christou, Anastasis & Maratheftis, Grivas & Elia, Michael & Hapeshi, Evroula & Michael, Costas & Fatta-Kassinos, Despo, 2016. "Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits," Agricultural Water Management, Elsevier, vol. 173(C), pages 48-54.
    10. Vítor João Pereira Domingues Martinho, 2021. "Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management," Sustainability, MDPI, vol. 13(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2010:i:3:p:385-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.