IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i2p363-373.html
   My bibliography  Save this article

Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes

Author

Listed:
  • Ramos, Alice F.
  • Santos, Francisco L.

Abstract

The impact of different irrigation scheduling regimes on the quantity and quality of olive oil from a low-density olive grove in southern Portugal was assessed during the irrigation seasons of 2006 and 2007. Olive trees were subjected to one of the following treatments: A--full irrigation; B--sustained deficit irrigation (SDI) with 60% of ETc water applied with irrigation; C--regulated deficit irrigation (RDI) with irrigation water applied at three critical phases: before flowering, at the beginning of pit hardening and before crop harvesting and D--rain-fed treatment. Olive oil yield was significantly higher than rain-fed conditions in 2006, an "on year" of significant rainfall during summer. No significant yield differences were observed in the following "off year". Among the irrigated treatments, olive oil production of treatment B was 32.5% and 40.1% higher in 2006 and 2007, respectively than the fully irrigated treatment A, despite receiving 49% less irrigation water. Such strategy could allow for an efficient use of water in the region, of very limited available resources, and for modest but important oil yield increase. Nonetheless, on the "on year" of 2006 treatment C used 13.9% of the water applied to treatment B and produced only 23.9% less olive fruits which could also make it illegible as the next possible strategy to use for irrigating olive trees in the region, provided that water is secured latter in the summer, a period of vital importance for oil accumulation and very sensitive to water stress as the poor results of 2007 revealed. The different treatment water regimes did not impact on the chemical characteristics of olive oils that were within the set threshold limits. Similarly, the sensory characteristics of the olive oils as well as bitterness and pungency were negligible for all treatments allowing them to be assessed as of "superior quality".Overall, irrigation treatments had no influence on the commercial value of produced oils, being all classified as "extra virgin". Such funding may be of vital importance to farmers willing to further their irrigation area, save water and still retain the protected designation of origin (PDO) seal of quality for their oil.

Suggested Citation

  • Ramos, Alice F. & Santos, Francisco L., 2010. "Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(2), pages 363-373, February.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:363-373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00311-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moriana, Alfonso & Perez-Lopez, David & Gomez-Rico, Aurora & Salvador, Maria de los Desamparados & Olmedilla, Nicolas & Ribas, Francisco & Fregapane, Giuseppe, 2007. "Irrigation scheduling for traditional, low-density olive orchards: Water relations and influence on oil characteristics," Agricultural Water Management, Elsevier, vol. 87(2), pages 171-179, January.
    2. Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    2. Luis Gomes & Tânia Nobre & Adélia Sousa & Fernando Rei & Nuno Guiomar, 2020. "Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties—A Tool for Sustainable Crop Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    3. Morales-Sillero, A. & García, J.M. & Torres-Ruiz, J.M. & Montero, A. & Sánchez-Ortiz, A. & Fernández, J.E., 2013. "Is the productive performance of olive trees under localized irrigation affected by leaving some roots in drying soil?," Agricultural Water Management, Elsevier, vol. 123(C), pages 79-92.
    4. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    5. Carmona-Torres, Carmen & Parra-López, Carlos & Hinojosa-Rodríguez, Ascensión & Sayadi, Samir, 2014. "Farm-level multifunctionality associated with farming techniques in olive growing: An integrated modeling approach," Agricultural Systems, Elsevier, vol. 127(C), pages 97-114.
    6. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    7. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    9. Faci, J.M. & Medina, E.T. & Martínez-Cob, A. & Alonso, J.M., 2014. "Fruit yield and quality response of a late season peach orchard to different irrigation regimes in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 143(C), pages 102-112.
    10. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Caruso, Giovanni & Gucci, Riccardo & Urbani, Stefania & Esposto, Sonia & Taticchi, Agnese & Di Maio, Ilona & Selvaggini, Roberto & Servili, Maurizio, 2014. "Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio," Agricultural Water Management, Elsevier, vol. 134(C), pages 94-103.
    12. Cameira, M.R. & Pereira, A. & Ahuja, L. & Ma, L., 2014. "Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 146(C), pages 346-360.
    13. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    3. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (olea europaea L., cv. Morisca) I. - Growth and water relations," Agricultural Water Management, Elsevier, vol. 98(6), pages 941-949, April.
    5. Trabelsi, Lina & Gargouri, Kamel & Ayadi, Mohamed & Mbadra, Chaker & Ben Nasr, Mohamed & Ben Mbarek, Hadda & Ghrab, Mohamed & Ben Ahmed, Gouta & Kammoun, Yasmine & Loukil, Emna & Maktouf, Sameh & Khli, 2022. "Impact of drought and salinity on olive potential yield, oil and fruit qualities (cv. Chemlali) in an arid climate," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Perez-Lopez, D. & Ribas, F. & Moriana, A. & Olmedilla, N. & de Juan, A., 2007. "The effect of irrigation schedules on the water relations and growth of a young olive (Olea europaea L.) orchard," Agricultural Water Management, Elsevier, vol. 89(3), pages 297-304, May.
    7. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    8. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    10. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    11. Dabbou, Samia & Chehab, Hechmi & Faten, Brahmi & Dabbou, Sihem & Esposto, Sonia & Selvaggini, Roberto & Taticchi, Agnese & Servili, Maurizio & Montedoro, Gian Francesco & Hammami, Mohamed, 2010. "Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions," Agricultural Water Management, Elsevier, vol. 97(5), pages 763-768, May.
    12. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.
    13. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Hueso, A. & Trentacoste, E.R. & Junquera, P. & Gómez-Miguel, V. & Gómez-del-Campo, M., 2019. "Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    15. Sofiene B. M. Hammami & Manel Ben Laya & Narjes Baazaoui & Besma Sghaier-Hammami, 2022. "Vegetative Growth Dynamic and Its Impact on the Flowering Intensity of the Following Season Depend on Water Availability and Bearing Status of the Olive Tree," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    16. Pierantozzi, P. & Torres, M. & Tivani, M. & Contreras, C. & Gentili, L. & Parera, C. & Maestri, D., 2020. "Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters," Agricultural Water Management, Elsevier, vol. 238(C).
    17. Amira Oueslati & Samia Dabbou & Nosra Methneni & Giuseppe Montevecchi & Vincenzo Nava & Rossana Rando & Giovanni Bartolomeo & Andrea Antonelli & Giuseppa Di Bella & Hedi Ben Mansour, 2023. "Pomological and Olive Oil Quality Characteristics Evaluation under Short Time Irrigation of Olive Trees cv. Chemlali with Untreated Industrial Poultry Wastewater," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    18. Corell, M. & Pérez-López, D. & Andreu, L. & Recena, R. & Centeno, A. & Galindo, A. & Moriana, A. & Martín-Palomo, M.J., 2022. "Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Hueso, A. & Camacho, G. & Gómez-del-Campo, M., 2021. "Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 248(C).
    20. Morales-Sillero, A. & García, J.M. & Torres-Ruiz, J.M. & Montero, A. & Sánchez-Ortiz, A. & Fernández, J.E., 2013. "Is the productive performance of olive trees under localized irrigation affected by leaving some roots in drying soil?," Agricultural Water Management, Elsevier, vol. 123(C), pages 79-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:363-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.